§ Multi 9

Оборудование для распределительных сетей низкого напряжения на токи от 0,5 до 125 А

"Шнейдер Электрик Украина" ООО

03057, Киев, ул. Смоленская, 31-33, корпус 29 Тел. 8 (044) 538 14 70 Факс 8 (044) 538 14 71 54030, Николаев, ул. Никольская, 25, Бизнес-центр "Александровский", офис 5

Тел. 8 (0512) 58 24 67 Факс 8 (0512) 58 24 68 49000, Днепропетровск, ул. Глинки, 17, 4 этаж, Тел. 8 (056) 79 00 888

Факс 8 (056) 79 00 999

83087, Донецк, ул. Инженерная ,1В Тел. 8 (062) 385 48 45 Факс 8 (062) 385 49 23

79015, Львов ул. Тургенева, 72, корп. 1 Тел. 8 (032) 298 85 85 Факс 8 (032) 298 85 85

95013, Симферополь, ул. Севастопольская, 43/2, офис 11

Тел. 8 (0652) 44 38 26 Факс 8 (0652) 44 38 26

61070, Харьков ул. Ак. Проскуры, 1, Бизнес центр "Telesens", офис 569 Тел. 8 (0577) 19 07 49 Факс 8 (0577) 19 07 79 65079, Одесса, ул. Куликово поле 1, офис 213 Тел. 8 (048) 728 65 55 Факс 8(048) 728 65 35

Поскольку стандарты, спецификации и схемы могут меняться со временем, пожалуйста, запрашивайте подтверждение информации, приведенной в настоящем документе.

Служба поддержки 8 800 601 72 20 (бесплатно по всей Украине со стационарных номеров) helpdesk@ua.schneider-electric.com

www.schneider-electric.com.ua www.s-e.com.ua

сооружения

Распределение электроэнергии

Содержание

	Страница	
Алфавитный указатель	2	
Указатель номер по каталогу	3	
Защита цепей	9	1
Дифференциальная защита	31	2
Контроль и управление	41	3
Корпуса щитов	87	4
Технические характеристики	95	5
Применение	103	
Размеры	112	

Алфавитный указатель

A - Z		MNx, расцепитель минимального		TV, диммер	68
		напряжения для модуля Vigi NG125	39	V, световой индикатор	59
АСТ o+f, вспомогательное		Multi 9, принтер	86	Vigi C60, дифференциальный модуль Vigi NG125, дифференциальный	35
устройство для СТ АСТс, вспомогательное устройство для СТ	55 57	MX+OF, независимый расцепитель		модуль высокой чувствительности	36
АСТР, вспомогательное устройство для СТ		и блок-контакт для C60, C120 и DPN N	21	Vigi NG125, дифференциальный	
ATEt, вспомогательное устройство для СТ		MX+OF, независимый расцепитель		модуль средней чувствительности	37
ATEt, вспомогательное устройство	52	и блок-контакт для ID	34	VLT, щитовой вольтметр	76
ATLz, вспомогательное устройство	52	МХ+ОF, независимый расцепитель	22		
ATL с - с - с - с - с - с - с - с - с - с	52	и блок-контакт для C32H-DC MX+OF, независимый расцепитель	22	А-Я	
ATLc+c, вспомогательное устройство ATL4, вспомогательное устройство	52 52	и блок-контакт для модуля Vigi NG125	38	A BORTON BROWLING WYDA VDE VD7	85
АТЕ-, веномогательное устройство	52	MXV, независимый расцепитель		Адаптер для кнопок XB4, XB5, XB7 Аксессуары для монтажа щитов	90
повторного включения	27	для модуля Vigi NG125	39	Аксессуары для присоединения	94
ВР, кнопка	59	NG125H, автоматический		Аксессуары для С32H-DC Аксессуары для С60 и С120	22 23
DI, KITOTIKA	00	выключатель, кривая С	17	Аксессуары для соо и с 120	20
C32H-DC, автоматический		NG125N, автоматический	40	Вспомогательные устройства для ID	34
выключатель, кривая С	19	выключатель, кривые В, С и D	16	Вспомогательные электрические	
С60а, автоматический	10	NG125L, автоматический выключатель, кривые B, C и D	18	устройства для C60, C120 и DPN N	21
выключатель, кривые В и С С60Н, автоматический	10	NG125LMA, защита для		Вспомогательные электрические	2 20
выключатель, кривые B, C и D	12	двигателей	24	устройства для NG125 и модуля Vigi 38 Гребенчатые шинки	3, 39 71
С60N, автоматический				Гребенчатые шинки Гребенчатая шинка для DPN	91
выключатель, кривые B, C и D	11	ОF, блок-контакт состояния		Гребенчатая шинка для С60	92
C60L, автоматический		для C60, C120 и DPN N	21	Гребенчатая шинка для C120, NG125	93
выключатель, кривые В, С, Z	13	OF, блок-контакт состояниядля ID OF, блок-контакт состояния	34	Защита двигателей	24
С60LMA, защита для двигателей	24	для С32Н-DС	22		3, 34
C120N, автоматический выключатель, кривая С	14	OFS, блок-контакт для ID	30	Клеммные заглушки 23 Навесная блокировка	3, 34 23
С120Н, автоматический	1-7	OF, блок-контакт состояния		Основание для установки втычных	20
выключатель, кривая С	15	для модуля Vigi NG125	38	автоматов	23
CDS, реле отключения		OF + SD, блок-контакт		Передаточный механизм	23
неприоритетной нагрузки	65	сигнализации повреждения для модуля Vigi NG125	38	Пломбирующее устройство	94
СН, таймер	79 79	для модуля утдетчетие	00	Разъемный фланец для рукоятки	23
CI, счетчик импульсов CM, переключатель	79 59	PC, розетки на DIN-рейку	83	Рейка DIN, 2м Розетки на DIN рейку	94 83
СМА, переключатель амперметра	76	РМ9, мультиметр	77	Стационарная рукоятка	23
CMV, переключатель вольтметра	76	PRC, ограничитель перенапряжений	49	Фальш-модуль	23
СТ, контакторы	53	PRD, ограничитель перенапряжений	46	Цифровые приборы на DIN рейку	76
СТ, контакторы с ручным	- 4	PRE, прибор предварительного извещения о выключении освещения	71		
управлением	54	РЕ, ограничитель перенапряжений	43		
DPN N Vigi, дифференциальный		P25M, автомат защиты двигателя	24		
автоматический выключатель	32				
DPN N, автоматический		RC, реле контроля	75		
выключатель, кривые В и С	20	SBI, комбинированный			
L DI WEIGUGEGE WAS DIEW	58	разъединитель-предохранитель	42		
I, выключатель нагрузки IC50, IC200, IC 2000, IC2000 P+	36	SD, контакт сигнализации			
сумеречные выключатели	72	повреждения для C60, C120 и DPN N	21		
IĎ, дифференциальный		SDV, контакт сигнализации			
выключатель нагрузки	33	повреждения для модуля Vigi NG125	38		
ІН, электромеханическое	04	SD, контакт сигнализации повреждения для C32H-DC	22		
реле времени ІНР, программируемое реле времени	61 62	SO, звонок	85		
ITIP, программируемое реле времени ITM Ikeos, многофункц. таймер	64	SR, зуммер	85		
Kaedra, пылезащищенные корпуса щитов	qΛ	TI, трансформатор тока	80		
	50	ТЬ, импульсное реле	50		
ME/MEr, счетчик активной	70	TLc, импульсное реле со встроенными вспомогательными			
электроэнергии MIN, регулятор выдержки времени	78 70	функциями	51		
Mini Pragma, корпуса щитов	88	TLI, импульсное реле	50		
MN, расцепитель минимального		Tlm, импульсное реле со			
напряжения для C60, C120 и DPN N	21	встроенными вспомогательными			
MN, расцепитель		функциями	51		
минимального напряжения для ID	34	TLs, импульсное реле со встроенными вспомогательными			
MN, расцепитель минимального	22	функциями	51		
напряжения для C32H-DC MN, расцепитель минимального	~~	Tm, мотор-редуктор	25		
напражения пля молупя Vigi NG125	38	TR, трансформатор напряжения	84		

Nº no	каталогу	стр.	Nº no	о каталогу ст	p.	Nº no) каталогу	стр
10000			13946	Крепление для проводов Kaedra	90	15230	Клемная заглушка для TR, 10 модулей	
10235	Упрощенный клеммник для корпуса щита Mini Pragma,			Комплект для пломбирования Kaedra	90		MINe, регулятор выдержки времени, 230 В пер. тока	
.0200	4 зажима	94		Замок с ключом Kaedra Вставка Kaedra, треугольная	90 90		MINs, регулятор выдержки времени, 230 В пер. тока MINp, регулятор выдержки времени, 230 В пер. тока	
10236	Упрощенный клеммник для корпуса щита Mini Pragma,			Вставка Kaedra, квадратная	90		ІС50, сумеречный выключатель	
	8 зажимов	94		Мини-корпус щита Kaedra, 3 модуля	90	15268	Настенный фотоэлемент для ІС	
13000				Мини-корпус щита Kaedra, 4 модуля Мини-корпус щита Kaedra, 6 модулей	90 90		ITM Ikeos, многофункциональное реле времени, 4 канала Картридж памяти для ITM Ikeos	
13229	Фальш-модули для корпуса щита Mini Pragma,			Мини-корпус щита каесна, о модулей Мини-корпус щита Kaedra, 8 модулей	90		Фотоэлемент на переднюю панель для IC	
	комплект из 10 шт.	94	13979	Мини-корпус щита Kaedra, 12 модулей	90	15284	IC200, сумеречный выключатель	
	Бланки этикеток для щита Mini Pragma	94		Пылевлагозащищенный корпус щита Kaedra, 12 модулей	90		TVe700, диммер	
3301	Mini Pragma, корпус щита с прозрачной дверцей, встраиваемый, 4 модуля по 18 мм	89		Пылевлагозащищенный корпус щита Kaedra, 18 модулей Пылевлагозащищенный корпус щита Kaedra, 24 модуля	90 90		TV700, диммер TV01000. диммер	
3302	Mini Pragma, корпус щита с прозрачной дверцей,	00		Пылевлагозащищенный корпус щита Kaedra, 24 модуля Пылевлагозащищенный корпус щита Kaedra, 36 модулей	90		Vo1000, диммер	
	встраиваемый, 6 модулей по 18 мм	89	13985	Пылевлагозащищенный корпус щита Kaedra, 36 модулей	90	15291	RGo, регулятор с датчиком освещенности	
3303	Міпі Pragma, корпус щита с прозрачной дверцей,	89		Пылевлагозащищенный корпус щита Kaedra, 54 модуля	90		RGo, датчик освещенности (запасной)	
3304	встраиваемый, 8 модулей по 18 мм Mini Pragma, корпус щита с прозрачной дверцей,	09	13987	Пылевлагозащищенный корпус щита Kaedra, 72 модуля	90		RPo, оптический повторитель ISo, дополнительное устройство для диммеров	
	встраиваемый, 12 модулей по 18 мм	89	14000)			ТУВо, диммер	
3305	Mini Pragma, корпус щита с прозрачной дверцей,		14180	Врезной замок для пылевлагозащищенного корпуса			NTVo, дополнительное устройство для диммеров	
2215	встраиваемый, 18 модулей по 18 мм Врезной замок для корпуса щита Mini Pragma в 1 и 3 ряда	89 94		щита Mini Pragma	94		TTVо, дополнительное устройство для диммеров	
	Пломбирующее устройство для корпуса щита	34	14190	Удлиненные заглушки для пылевлагозащищенного корпуса	94		PC, розетка итальянский стандарт, 16A, 2 полюса + земля PC, розетка белая, 16A, 2 полюса + земля	
	Mini Pragma в 1, 2, 3 ряда	94	14801	щита Mini Pragma Гребенчатая шинка для С60, 1 полюс, 54 ответвления	92		РС, розетка белая, 16А, 2 полюса + земля + индикация	
	Комплект для встраиваемого корпуса щита Mini Pragma	94		Гребенчатая шинка для С60, 2 полюса, 54 ответвления	92		РС, розетка немецкий стандарт, 16А, 2 полюса + земля	
3362	Держатель клеммников для корпуса щита Mini Pragma,	94		Гребенчатая шинка для С60, 3 полюса, 54 ответвления	92		PC, розетка белая, 20A, 2 полюса + земля	
3363	6 модулей по 18 мм Держатель клеммников для корпуса щита Mini Pragma,	34		Гребенчатая шинка для С60, 4 полюса, 54 ответвления	92 93		PC, розетка белая, 20A, 3 полюса + земля PC, розетка белая, 20A, 3 полюса + нейтраль + земля	
	8 модулей по 18 мм	94	14811 14812	Гребенчатая шинка для C120, NG125, 1 полюс, 16 ответвлений Гребенчатая шинка для C120, NG125, 2 полюса, 16 ответвлений		15320	SO, звонок, 230 В	
364	Держатель клеммников для корпуса щита	•	14813	Гребенчатая шинка для C120, NG125, 3 полюса, 15 ответвлений	93		SO, звонок, 8-12 B	
1366	Mini Pragma, 12, 24, 36 модулей по 18 мм Mini Pragma, корпус щита с прозрачной дверцей,	94	14814	Гребенчатая шинка для C120, NG125, 4 полюс, 16 ответвлений	93		SO, 39MMep, 230 B SO, 39MMep, 8, 12 B	
JUU	илл Ртадта, корпус щита с прозрачнои дверцеи, навесной, 4 модуля по 18 мм	88	14818	Защитные колпачки и торцевые заглушки	93		SO, зуммер, 8-12 В PC, розетка красная, 16A, 2 полюса + земля	
367	Mini Pragma, корпус щита с прозрачной дверцей,		14880	для гребенчатой шинки 1, 2, 3, 4 полюса Гребенчатая шинка для DPN, 1 полюс + нейтраль,	უკ	15331	ІН, электромеханическое реле времени, 7 дн.	
	навесной, 6 модулей по 18 мм	88	14000	26 ответвлений	91		ІН, электромеханическое реле времени, 24 ч.	
368	Mini Pragma, корпус щита с прозрачной дверцей, навесной, 8 модулей по 18 мм	88		Гребенчатая шинка для С60, 1 полюс, 12 ответвлений	92		IH, электромеханическое реле времени, 24 ч.	
369	навеснои, в модулеи по 18 мм Mini Pragma, корпус щита с прозрачной дверцей,	00		Гребенчатая шинка для С60, 2 полюса, 12 ответвлений	92		IH, электромеханическое реле времени, 24 ч. IH, электромеханическое реле времени, 60 мин.	
	навесной, 12 модулей по 18 мм	88		Гребенчатая шинка для C60, 3 полюса, 12 ответвлений Гребенчатая шинка для C60, 4 полюса, 12 ответвлений	92 92	15341	Дополнительные перемычки для ІН, комплект из 20 шт.	
370	Mini Pragma, корпус щита с прозрачной дверцей,			Изолированный переходник для кабеля 25 кв. мм,	JL		Специальная клеммная заглушка для MIN	
271	навесной, 18 модулей по 18 мм Mini Pragma, корпус щита с непрозрачной дверцей,	88		комплект из 4 шт	92		MIN, регулятор выдержки времени	
1071	встраиваемый, 4 модуля по 18 мм	89	14886	Торцевые заглушки для гребенчатой шинки	01		IH, электромеханическое реле времени, 24 ч. IH, электромеханическое реле времени, 24 ч.+ 7 дней	
372	Mini Pragma, корпус щита с непрозрачной дверцей,		14886	1 полюс + нейтраль, комплект из 40 шт Торцевые заглушки для гребенчатой шинки	91		ІН, электромеханическое реле времени, 7 дней	
	встраиваемый, 6 модулей по 18 мм	89	14000	1 полюс, 2 полюса, комплект из 40 шт	92		PRE, прибор предварительного извещения	
373	Mini Pragma, корпус щита с непрозрачной дверцей, встраиваемый, 8 модулей по 18 мм	89	14887	Торцевые заглушки для гребенчатой шинки		45 400	о выключении освещения	
374	міпі Pragma, корпус щита с непрозрачной дверцей,	09	44007	3 полюса + нейтраль, комплект из 40 шт	91		ATLc+s, 130-240 В пер. тока ATLc+c, 130-240 В пер. тока	
	встраиваемый, 12 модулей по 18 мм	89	14887	Торцевые заглушки для гребенчатой шинки 3 полюса, 4 полюса, комплект из 40 шт	92		ATL4, 230-240 В пер. тока, 110 В пост. тока	
375	Mini Pragma, корпус щита с непрозрачной дверцей,		14888	Защитные колпачки для гребенчатой шинки	0L		ATLz, 130-240 В пер. тока	
2276	встраиваемый, 18 модулей по 18 мм Mini Pragma, корпус щита с непрозрачной дверцей,	89		1, 2, 3, 4 полюса, комплект из 40 шт	92		PTV1, преднагрузкадля галогенных ламп ATEt, 230-240 В пер. тока, 110 В пост. тока	E0
0010	навесной, 4 модуля по 18 мм	88	14890	2 гребенчатые шинки для DPN,	91		АГЕТ, 230-240 В Пер. Тока, ТТО В ПОСТ. ТОКА СН, таймер	52,
3377	Mini Pragma, корпус щита с непрозрачной дверцей,		14891	1 полюс + нейтраль, 96 ответвлений 2 гребенчатые шинки для С60, 1 полюс, 48 ответвлений	92	15443	СІ, счетчик импульсов	
	навесной, 6 модулей по 18 мм	88		2 гребенчатые шинки для С60, 2 полюса, 48 ответвлений	92		IC200P+, сумеречный выключатель	
3378	Mini Pragma, корпус щита с непрозрачной дверцей, навесной, 8 модулей по 18 мм	88		2 гребенчатые шинки для С60, 3 полюса, 48 ответвлений	92		TLI, импульсное реле 16 А, 1 полюс, 230-240 В пер. тока	
3379	Міпі Pragma, корпус щита с непрозрачной дверцей,	00		2 гребенчатые шинки для С60, 4 полюса, 48 ответвлений Защитные колпачки для гребенчатой шинки	92	10002	TLI, импульсное реле 16 A, 1 полюс, 48 В пер. тока, 48 В пост. тока	
	навесной, 12 модулей по 18 мм	88	14090	1, 3 полюса + нейтраль, комплект из 40 шт	91	15503	TLI, импульсное реле 16 A, 1 полюс,24 В пер. тока	
3380	Mini Pragma, корпус щита с непрозрачной дверцей,		14899	3 гребенчатые шинки для DPN,	٠.		24 В пост. тока	
381	навесной, 18 модулей по 18 мм Держатель клеммников для корпуса щита Mini Pragma,	88		3 полюса + нейтраль, 96 ответвлений	91	15505	TL, импульсное реле, 32 A, ETL, 230-240 В пер. тока, 110 В пост. тока	
,001	18 модулей по 18 мм	94	15000)		15510	TL, импульсное реле, 16 A, 1 полюс, 230-240 В пер. тока,	
	Белая лента для принтера, неклейкая, 19 мм	86	15005	I, выключатель нагрузки, 1 полюс	58		110 В пост. тока	
	Белая лента для принтера, клейкая, 12 мм	86 86		I, выключатель нагрузки, 1 полюс I, выключатель нагрузки, 2 полюса	58	15511	Т., импульсное реле, 16 А, 1 полюс, 130 В пер. тока,	
3496 3497	Белая лента для принтера, клейкая, 19 мм Желтая лента для принтера, клейкая, 19 мм	86	15009	I, выключатель нагрузки, 1 полюс	58	15512	48 В пост. тока ТL, импульсное реле, 16 A, 1 полюс, 48 В пер. тока,	
	Multi 9, принтер	86		I, выключатель нагрузки, 2 полюса	58	10012	24 В пост. тока	
575	Клеммник Pragma для корпуса щита Mini Pragma,			I, выключатель нагрузки, 3 полюса I, выключатель нагрузки, 4 полюса	58 58	15513	TL, импульсное реле, 16 A, 1 полюс, 24 В пер. тока,	
0576	4 зажима, Ш = 85 мм Клеммник Pragma для корпуса шита Mini Pragma.	94		I, выключатель нагрузки, 1 полюс	58	45544	12 В пост. тока	
JJ / U	8 зажимов, Ш = 85 мм	94	15014	I, выключатель нагрузки, 2 полюса	58	10014	TL, импульсное реле, 16 A, 1 полюс, 12 В пер. тока, 6 В пост. тока	
577	Клеммник Pragma для корпуса щита Mini Pragma,			I, выключатель нагрузки, 3 полюса I, выключатель нагрузки, 4 полюса	58 58	15515	TL, импульсное реле, 32 A, 1 полюс, 230-240 В пер. тока,	
E70	16 зажимов, Ш = 202 мм	94		г, выключатель нагрузки, 4 полюса РС, розетка немецкий стандарт, 16A,	JU	455.5	10 В пост. тока	
578	Клеммник Pragma для корпуса щита Mini Pragma, 22 зажима. Ш = 202 мм	94		2 полюса + земля + индикация	83		TLm, 230-240 В пер. тока, 110 В пост. тока TLs, 230-240 В пер. тока, 110 В пост. тока	
579	22 зажима, ш = 202 мм Клеммник Pragma для корпуса щита Mini Pragma,	J4		I, выключатель нагрузки с индикатором, 1 полюс	58		TLc, 230-240 В пер. тока, 110 В пост. тока TLc, 230-240 В пер. тока, 110 В пост. тока	
	32 зажима, Ш = 202 мм	94		I, выключатель нагрузки с индикатором, 2 полюса I, выключатель нагрузки, 1 полюс	58 58		ТL, импульсное реле, 16 A, 2 полюса, 230-240 В пер. тока,	
	Изолирующий колпачок, зеленого цвета, Ш = 85 мм	94		I, выключатель нагрузки, 1 полюс I, выключатель нагрузки, 2 полюса	58		110 В пост. тока	
	Изолирующий колпачок, зеленого цвета, Ш = 202 мм Изолирующий колпачок, красного цвета, Ш = 85 мм	94 94	15092	I, выключатель нагрузки, 3 полюса	58	15521	TL, импульсное реле, 16 A, 2 полюса, 130 В пер. тока, 48 В пост. тока	
585	Изолирующий колпачок, красного цвета, Ш = 202 мм	94		I, выключатель нагрузки, 4 полюса	58	15522	ТL, импульсное реле, 16 A, 2 полюса, 48 В пер. тока,	
586	Изолирующий колпачок, синего цвета, Ш = 85 мм	94		Блок контакта OF, 2 полюса Рейка DIN, 2м	58 94		24 В пост. тока	
	Изолирующий колпачок, синего цвета, Ш = 202 мм	94		Реика DIN, 2м І, выключатель нагрузки с индикатором, 1 полюс	58	15523	TL, импульсное реле, 16 A, 2 полюса, 24 В пер. тока,	
735 736	Этикетки символов, стандартные Этикетки символов, специальные	94 94	15101	I, выключатель нагрузки с индикатором, 2 полюса	58	15504	12 В пост. тока TL, импульсное реле, 16 A, 2 полюса, 12 В пер. тока,	
	Mini Pragma, корпус щита с непрозрачной дверцей,			Адаптер для кнопок ХВ4, ХВ5, ХВ7	85	10024	ть, импульсное реле, то A, 2 полюса, т2 в пер. тока, 6 В пост. тока	
	навесной, 24 модуля по 18 мм	88		Универсальный адаптер РМ9, мультиметр	85 77	15530	TLI, импульсное реле, 16 A, ETL, 230-240 В пер. тока,	
913	Mini Pragma, корпус щита с непрозрачной дверцей,	88	15201	вольтметр цифровой	76	15504	12 В пост. тока	50
922	навесной, 36 модулей по 18 мм Mini Pragma, корпус щита с прозрачной дверцей,	Oδ	15202	амперметр цифровой	76	15531	TLI, импульсное реле, 16 A, ETL, 130 В пер. тока, 6 В пост. тока	
JLL	навесной, 24 модуля по 18 мм	88		частотомер цифровой	76	15532	TLI, импульсное реле, 16 A, ETL, 48 В пер. тока, 110 В пост. т	гока
923	Mini Pragma, корпус щита с прозрачной дверцей,			амперметр цифровой ТВ, звонковый трансформатор, 16 ВА, 230/8-12 В	76 84	15533	TLI, импульсное реле, 16 A, ETL, 24 В пер. тока, 110 В пост. т	гока
000	навесной, 36 модулей по 18 мм	88		тк, звонковый грансформатор, 16 ВА, 230/8-12 В ТR, звонковый трансформатор, 4 ВА, 230/8-12 В	84	15534	TLI, импульсное реле, 16 A, ETL, 12 В пер. тока, 110 В пост. т	гока
932	Mini Pragma, корпус щита с непрозрачной дверцей, встраиваемый, 24 модуля по 18 мм	89	15214	ТР, звонковый трансформатор, 4 ВА, 230/8 В	84		РF65, стационарный ограничитель перенапряжений, 3 поли	
	встраиваемыи, 24 модуля по то мм Mini Pragma, корпус щита с непрозрачной дверцей,	UJ	15215	ТР, звонковый трансформатор, 25 ВА, 230/12-24 В	84		PF40, стационарный ограничитель перенапряжений, 3 поли PF65, стационарный ограничитель перенапряжений, 2 поли	
	встраиваемый, 36 модулей по 18 мм	89	15216	TR, звонковый трансформатор, 8 BA, 230/8-12 B	84	15585	РF65, стационарный ограничитель перенапряжений, 4 поли	
933				ТВ, трансформатор безопасности, 16 ВА, 230/12-24 В ТВ, трансформатор безопасности, 25 ВА, 230/12-24 В	84 84		PF65, стационарный ограничитель перенапряжений,	
933	Mini Pragma, корпус щита с прозрачной дверцей,			111, 1panopopinatop occontachoctil, 20 DM, 200/ 12-24 D			полюса + нейтраль	
933	встраиваемый, 24 модуля по 18 мм	89		TR, трансформатор безопасности, 40 BA, 230/12-24 B	84	4550		
933	встраиваемый, 24 модуля по 18 мм Mini Pragma, корпус щита с прозрачной дверцей,		15220 15222	ТР, трансформатор безопасности, 63 ВА, 230/12-24 В	84 84		РF40, стационарный ограничитель перенапряжений, 2 поли	
933 942 943	встраиваемый, 24 модуля по 18 мм	90 90 90	15220 15222 15228			15588		

№ по	каталогу ст	p.	Nº no	о каталогу	стр.	№по	о каталогу (стр.
	РF20, стационарный ограничитель перенапряжений, 2 полюса			АМР, шкала, 1000/5	76	16566	PRD40, ограничитель перенапряжений	
	РF20, стационарный ограничитель перенапряжений, 4 полюса			АМР, шкала, 1250/5 АМР, шкала, 1500/5	76 76	16567	со сменным картриджем, 1 полюс PRD40, ограничитель перенапряжений	46
	PF8, стационарный ограничитель перенапряжений, 2 полюса PF8, стационарный ограничитель перенапряжений, 4 полюса	43 43		СМА, переключатель амперметра	76 76	10307	со сменным картриджем, 1 полюс + нейтраль	46
15597	PF20, стационарный ограничитель перенапряжений, 3 полюса	43	16018	CMV, переключатель вольтметра	76	16568	PRD40, ограничитель перенапряжений	
		43		АМР, шкала, 2000/5	76	10500	со сменным картриджем, 3 полюса	46
	PF65, стационарный ограничитель перенапряжений, 1 полюс PF65, стационарный ограничитель перенапряжений,	43		СТ, контактор 2 полюса, 2 н.о., 25 A 24 В пер. тока СТ, контактор 4 полюса, 4 н.о., 25 A 24 В пер. тока	53 53	10009	PRD40, ограничитель перенапряжений со сменным картриджем, 3 полюса + нейтраль	4
10004	1 полюс + нейтраль	43		СТ, контактор 4 полюса, 4 н.з., 25 А 24 В пер. тока	53	16571	PRD20, ограничитель перенапряжений	
15685	РF65, стационарный ограничитель перенапряжений,		16024	СТ, контактор 2 полюса, 2 н.о., 63 А 24 В пер. тока	53		со сменным картриджем, 1 полюс	46
15506	3 полюса + нейтраль с перед. данных PF40, стационарный ограничитель перенапряжений, 1 полюс	43 43		СТ, контактор 4 полюса, 4 н.о., 63 А 24 В пер. тока СТ, контактор 4 полюса, 4 н.з., 63 А 24 В пер. тока	53 53	16572	PRD20, ограничитель перенапряжений со сменным картриджем, 1 полюс + нейтраль	46
	РЕ40, стационарный ограничитель перенапряжений,	40		АМР-ТП аналог. 30A на DIN рейку	76	16573	PRD20, ограничитель перенапряжений IT	
	1 полюс + нейтраль	43	16030	АМР, стандартный базовый прибор, 50-60 Гц на DIN рейку	76		со сменным картриджем, 3 полюса с перед. данных	46
15688	РF40, стационарный ограничитель перенапряжений,	40		АМР, шкала, 50/5 на DIN рейку	76 76	16574	PRD20, ограничитель перенапряжений	46
15690	3 полюса + нейтраль PF40, стационарный ограничитель перенапряжений,	43		АМР, шкала, 100/5 на DIN рейку АМР, шкала, 200/5 на DIN рейку	76 76	16576	со сменным картриджем, 3 полюса + нейтраль PRD8. ограничитель перенапряжений	40
10000	3 полюса + нейтраль с перед. данных	43		АМР, шкала, 400/5 на DIN рейку	76		со сменным картриджем, 1 полюс	46
	РF20, стационарный ограничитель перенапряжений, 1 полюс	43		АМР, шкала, 600/5 на DIN рейку	76	16577	PRD8, ограничитель перенапряжений	
15692	PF20, стационарный ограничитель перенапряжений, 1 полюс + нейтраль	43		АМР, шкала, 1000/5 на DIN рейку АМР, шкала, 1500/5 на DIN рейку	76 76	16578	со сменным картриджем, 1 полюс + нейтраль PRD8, ограничитель перенапряжений IT	46
15693	PF20, стационарный ограничитель перенапряжений,	40		АМР, шкала, 2000/5 на DIN рейку	76	10010	со сменным картриджем, 3 полюса с перед. данных	4
	3 полюса + нейтраль	43		вольтметр аналог. 0-300B на DIN рейку	76	16579	PRD8, ограничитель перенапряжений	
	PF8, стационарный ограничитель перенапряжений, 1 полюс PF8, стационарный ограничитель перенапряжений,	43		VLT, 72 x 72, 50-60 Гц на DIN рейку PRD65, ограничитель перенапряжений	76	16502	со сменным картриджем, 3 полюса + нейтраль PRC, ограничитель перенапряжений, последовательный	49
13033	1 полюс + нейтраль	43	10442	со сменным картриджем, 2 полюса с перед. данных	46		PRI. 6 В	49
15696	РF8, стационарный ограничитель перенапряжений,		16443	PRD65, ограничитель перенапряжений		16595	PRI, 1248 B	49
15704	3 полюса + нейтраль	43	16444	со сменным картриджем,3 полюса с перед. данных	46	16597	PRD40, ограничитель перенапряжений IT	46
	IHP, программируемое реле времени, 24 ч IHP, программируемое реле времени, 7дн.	62	10444	PRD40, ограничитель перенапряжений со сменным картриджем, 2 полюса с перед. данных	46	16599	со сменным картриджем, 4 полюса с перед. данных PRD20, ограничитель перенапряжений IT	46
	Патрон предохранителя 22х58, 40А аМ	42	16445	PRD40, ограничитель перенапряжений			со сменным картриджем, 4 полюса с перед. данных	46
	Патрон предохранителя 22х58, 50А аМ	42	40.4.5	со сменным картриджем, 3 полюса с перед. данных	46		PRD65, ограничитель перенапряжений	
	Патрон предохранителя 22x58, 63A aM Патрон предохранителя 22x58, 80A aM	42 42	16446	PRD20, ограничитель перенапряжений со сменным картриджем, 2 полюса	46		со сменным картриджем, 4 полюса + нейтраль с перед. данных	46
15755	Патрон предохранителя 22х58, 100А аМ	42	16447	PRD20, ограничитель перенапряжений	70	16664	PRD40, ограничитель перенапряжений	
15762	Патрон предохранителя 14х51, 25А аМ	42		со сменным картриджем, 3 полюса	46		со сменным картриджем, 4 полюса с перед. данных	46
	Патрон предохранителя 14х51, 32А аМ	42 42	16448	PRD8, ограничитель перенапряжений со сменным картриджем, 2 полюса	46	16667	PRD40, ограничитель перенапряжений со сменным картриджем, 2 полюса	46
	Патрон предохранителя 14x51, 40A aM Патрон предохранителя 14x51, 50A aM	42	16449	PRD8, ограничитель перенапряжений	40	16669	PRD40, ограничитель перенапряжений	40
	Патрон предохранителя 14x51, 10A gG	42		со сменным картриджем, 3 полюса	46		со сменным картриджем, 4 полюса	46
	Патрон предохранителя 14x51, 16A gG	42		ТI, трансформатор тока 50/5 A	81	16672	PRD20, ограничитель перенапряжений	40
	Патрон предохранителя 14x51, 32A gG Патрон предохранителя 14x51, 40A gG	42 42		TI, трансформатор тока 75/5 A TI, трансформатор тока 100/5 A	81 81	16673	со сменным картриджем, 1 полюс + нейтраль с перед. данны PRD20, ограничитель перенапряжений	IX 4t
	Патрон предохранителя 22х58, 32A gG	42		ТI, трансформатор тока 125/5 A	81	10010	со сменным картриджем, 4 полюса 46	
15795	Патрон предохранителя 22x58, 40A gG	42		TI, трансформатор тока 150/5 A	81	16674	PRD20, ограничитель перенапряжений	
	Патрон предохранителя 22x58, 50A gG	42 42		TI, трансформатор тока 200/5 A TI, трансформатор тока 150/5 A	81 81	16677	со сменным картриджем, 3 полюса + нейтраль с перед. данні PRD8, ограничитель перенапряжений	ых 46
	Патрон предохранителя 22x58, 63A gG Патрон предохранителя 22x58, 80A gG	42		П, трансформатор тока 150/5 A	81	10077	со сменным картриджем, 1 полюс + нейтраль с перед. данны	ıx 46
15914	ACTo+f, вспомогательное устройство для СТ, 2 A	55	16461	TI, трансформатор тока 250/5 A	81	16678	PRD8, ограничитель перенапряжений IT	
	АСТр, вспомогательное устройство для СТ, 24 В пер. тока	57		TI, трансформатор тока 300/5 A TI, трансформатор тока 400/5 A	81 81	16670	со сменным картриджем, 4 полюса с перед. данных PRD8, ограничитель перенапряжений	46
	АСТр, вспомогательное устройство для СТ, 230-240 В пер. тока Клеммные заглушки, 3 и 4 полюса, 25 А	57 57		П, трансформатор тока 400/5 A П, трансформатор тока 500/5 A	81	10079	со сменным картриджем, 3 полюса + нейтраль с перед. данн	ых 46
	Клеммные заглушки, 2 полюса, 40-63 А	57	16465	TI, трансформатор тока 600/5 A	81	16680	PRD8, ограничитель перенапряжений	
15923	Клеммные заглушки, 3 и 4 полюса, 40-63 А	57		ТІ, трансформатор тока 250/5 A	81		со сменным картриджем, 4 полюса	46
	СТ, контактор, 2 полюса, 1 н.з + 1 н.о., 16 A, 230-240 В пер. тока СТ, контактор, 2 полюса, 2 н.о., 16 A, 230-240 В пер. тока	53		TI, трансформатор тока 300/5 A TI, трансформатор тока 400/5 A	81 81	17000)	
15958	СТ, контактор, 1 полюс, 1 н.о., 25 А, 230-240 В пер. тока	53	16471	TI, трансформатор тока 500/5 A	81	17065	ME1, счетчик активной электроэнергии, 230 B, 63 A	78
	СТ, контактор, 2 полюса, 2 н.о., 25 А, 230-240 В пер. тока	53		ТІ, трансформатор тока 500/5 A	81 81	17066	МЕ1z, счетчик активной электроэнергии, 230 В, 63 А	78
	СТ, контактор, 2 полюса, 2 н.з., 25 A, 230-240 В пер. тока СТ, контактор, 3 полюса, 3 н.о., 25 A, 230-240 В пер. тока	53 53		TI, трансформатор тока 600/5 A TI, трансформатор тока 200/5 A	81		МЕ1zr, счетчик активной электроэнергии, 230 В, 63 А МЕ4, счетчик активной электроэнергии, 3*230/400 В, 63 А	78 78
15962	СТ, контактор, 4 полюса, 4 н.о., 25 А, 230-240 В пер. тока	53	16477	TI, трансформатор тока 250/5 A	81		МЕ4zr, счетчик активной электроэнергии, 3 *230/400 B, 63 A	78
	СТ, контактор, 4 полюса, 4 н.з., 25 А, 230-240 В пер. тока	53		ТІ, трансформатор тока 300/5 A	81		ME4zrt, счетчик активной электроэнергии,	
15964	СТ, контактор, 4 полюса, 2 н.о. + 2 н.з., 25 А, 230-240 В пер. тока	53		TI, трансформатор тока 400/5 A TI, трансформатор тока 500/5 A	81 81	17075	3*230/400 В, 40/6000 А МЕЗ, счетчик активной электроэнергии, 400 В, 63 А	78 78
15966	СТ, контактор, 2 полюса, 2 н.о., 40 А, 230-240 В пер. тока	53		ТI, трансформатор тока 600/5 A	81		МЕЗг, счетчик активной электроэнергии, 400 в, 63 А МЕЗг, счетчик активной электроэнергии, 3*230/400 В, 63 А	78
	СТ, контактор, 3 полюса, 3 н.о., 40 А, 230-240 В пер. тока	53	16482	TI, трансформатор тока 800/5 A	81			
	СТ, контактор, 4 полюса, 4 н.о., 40 А, 230-240 В пер. тока СТ, контактор, 4 полюса, 4 н.з., 40 А, 230-240 В пер. тока	53 53		TI, трансформатор тока 1000/5 A TI, трансформатор тока 40/5 A	81 81	18000		
	С1, контактор, 4 полюса, 4 н.з., 40 A, 230-240 В пер. тока СТ, контактор, 2 полюса, 2 н.о., 63 A, 230-240 В пер. тока	53		п, грансформатор тока 40/5 A П, трансформатор тока 1250/5 A	81		ВР, простая кнопка, серая, 1H3	58 58
15972	СТ, контактор, 3 полюса, 3 н.о., 63 А, 230-240 В пер. тока	53	16535	TI, трансформатор тока 1500/5 A	81		ВР, простая кнопка, красная, 1H3 ВР, простая кнопка, серая, 1HO	58
	СТ, контактор, 4 полюса, 4 н.о., 63 А, 230-240 В пер. тока	53		П, трансформатор тока 1250/5 A	81	18033	ВР, простая кнопка, серая, 1НО + 1НЗ	58 58
	СТ, контактор, 4 полюса, 4 н.з., 63 A, 230-240 В пер. тока СТ, контактор, 4 полюса, 2 н.о. + 2 н.з., 63 A,	53		TI, трансформатор тока 1500/5 A TI, трансформатор тока 1250/5 A	81 81	18034	ВР, двойная кнопка, зеленая/красная, 1НО/1НЗ	58
	230-240 В пер. тока	53	16541	TI, трансформатор тока 1500/5 A	81		ВР, двойная кнопка, серая/серая, 1HO/1H3 ВР, простая кнопка с индикатором, серая/зеленая,1HO,	58
	СТ, контактор, 2 полюса, 2 н.о., 100 А, 230-240 В пер. тока	53	16542	TI, трансформатор тока 2000/5 A	81	10000	вь, простая кнопка с индикатором, серая/зеленая, тно, 110-230 В пер. тока	58
	СТ, контактор, 4 полюса, 4 н.о., 100 A, 230-240 В пер. тока СТ, контактор с ручным управлением, 2 полюса, 2 н.о., 25 A,	53		TI, трансформатор тока 2500/5 A TI, трансформатор тока 3000/5 A	81 81	18037	ВР, простая кнопка с индикатором, серая/красная,1НЗ,	
10501	Ст, контактор с ручным управлением, 2 полюса,2 н.о., 25 А, 230-240 В пер. тока	54		П, трансформатор тока 3000/3 A П, трансформатор тока 2500/5 A	81	10000	110-230 B пер. тока	58
15982	СТ, контактор с ручным управлением, 3 полюса, 3 н.о., 25 А,		16546	TI, трансформатор тока 3000/5 A	81	10038	ВР, простая кнопка с индикатором, серая/зеленая,1HO, 12-48 В пер. тока	58
15000	230-240 В пер. тока	54		ТІ, трансформатор тока 4000/5 A	81	18039	ВР, простая кнопка с индикатором, серая/красная,	-
10983	СТ, контактор с ручным управлением, 4 полюса,4 н.о., 25 A, 230-240 В пер. тока	54	16549	TI, трансформатор тока 5000/5 A TI, трансформатор тока 6000/5 A	81 81	10070	1Н3, 12-48 В пер. тока	
15984	СТ, контактор с ручным управлением, 2 полюса, 2 н.о., 40 А,		16550	Цилиндр для TI	81		СМ на 2 позиции, переключатель, 1 группа СМ на 2 позиции, переключатель, 2 группа	59 59
	230-240 В пер. тока	54	16551	Цилиндр для TI	81		СМ на 2 позиции, переключатель, 2 группа СМ на 2 позиции, переключатель, 1 НО + 1 НЗ	59
15986	СТ, контактор с ручным управлением, 4 полюса, 4 н.о., 40 A, 230-240 В пер. тока	54		Пломбировочная крышка для TI Пломбировочная крышка для TI	81 81	18073	СМ на 3 позиции, переключатель, 1 группа	59
15987	СТ, контактор с ручным управлением, 2 полюса, 2 н.о., 63 А,	U-T		PRD65, ограничитель перенапряжений IT			СМ на 3 позиции, переключатель, 2 группа ATm3, устройство автоматики повторного включения	59
	230-240 В пер. тока	54		со сменным картриджем, 1 полюс	46	10000	для модульных мотор-редукторов Tm, TmC120 и МТ	30
15988	СТ, контактор с ручным управлением, 4 полюса, 4 н.о., 63 A, 230-240 В пер. тока	54	16556	PRD65, ограничитель перенапряжений со сменным картриджем, 1 полюс с перед. данных	46	18307	АТт7, устройство автоматики повторного включения	
	·	J4	16557	со сменным картриджем, т полюс с перед. данных PRD65, ограничитель перенапряжений	40	10010	для модульных мотор-редукторов Tm, TmC120 и МТ	30
16000				со сменным картриджем, 1 полюс + нейтраль с перед. даннь	ых 46		Тт, мотор-редуктор, 1-2P Тт, мотор-редуктор, 3-4P	26 26
	АМР, базовый прибор, 50-60 Гц	76	16558	PRD65, ограничитель перенапряжений IT	40	18312	TmC, мотор-редуктор, 2P	26
16004	АМР, стандартный базовый прибор, 50-60 Гц	76 76	16550	со сменным картриджем, 3 полюса с перед. данных PRD65, ограничитель перенапряжений	46	18314	Картридж памяти для ATm3 и ATm7	3
	VLT, 72 x 72, 50-60 Гц АМР, шкала для двигателей (3 ln), 30/5	76 76	. 5003	со сменным картриджем, 3 полюса + нейтраль с перед. данн	ных 46	18316	ATm, устройство автоматики повторного включения для модульных мотор-редукторов Tm, TmC120	28
16005		76	16561	PRD40, ограничитель перенапряжений		18320	у, световой индикатор, простой, красный, 110-230 В пер. тока	59
16005 16006 16007	АМР, шкала для двигателей (3 ln), 75/5			со сменным картриджем, 1 полюс с перед. данных	46			
16005 16006 16007 16008	АМР, шкала для двигателей (3 ln), 200/5	76	16560				V, световой индикатор, простой, зеленый,110-230 В пер. тока	
16005 16006 16007 16008 16009	АМР, шкала для двигателей (3 ln), 200/5 АМР, шкала, 50/5	76	16562	PRD40, ограничитель перенапряжений		18322	V, световой индикатор, простой, белый, 110-230 В пер. тока	59
16005 16006 16007 16008 16009 16010	АМР, шкала для двигателей (3 ln), 200/5 АМР, шкала, 50/5 АМР, шкала, 100/5	76 76		PRD40, ограничитель перенапряжений со сменным картриджем, 1 полюс + нейтраль с перед. даннь PRD40, ограничитель перенапряжений IT	ых 46	18322 18323	V, световой индикатор, простой, белый,110-230 В пер. тока V, световой индикатор, простой, синий,110-230 В пер. тока	59 59
16005 16006 16007 16008 16009 16010 16011 16012	АМР, шкала для двигателей (3 ln), 200/5 АМР, шкала, 50/5	76	16563	PRD40, ограничитель перенапряжений со сменным картриджем, 1 полюс + нейтраль с перед. даннь	ых 46 46	18322 18323 18324	V, световой индикатор, простой, белый, 110-230 В пер. тока	59 59 59

1982 1982	№ по каталогу	стр.	№ по каталогу	стр. № по каталогу стр.
Display Company of the Company o	18326 V световой инликатор мигающий красный		18648 NG125N 3 полюса + нейтраль, кривая С. 125 A	16 18785 NG125L1 полюс. кривая С. 80 A 1
Company Comp	110-230 В пер. тока	59	18649 NG125N 4 полюса, кривая C, 10 A	16 18788 NG125L 2 полюса, кривая C, 10 A 1
Color Colo		59	18651 NG125N 4 полюса, кривая C, 20 A	16 18790 NG125L 2 полюса, кривая C, 20 A 1
1881 1000		50		
Billion	18331 V, световой индикатор, простой, зеленый,		18654 NG125N 4 полюса, кривая C, 40 A	16 18793 NG125L 2 полюса, кривая C, 40 A 1
Description		59		
Color Colo	12-48 В пер./пост. тока	59	18658 NG125N 4 полюса, кривая C, 80 A	16 18796 NG125L 2 полюса, кривая C, 80 A 1
1856 100		59		
SECT CORN Transcr. general. (20.A. 1 1000	18334 V, световой индикатор, простой, желтый,		18663 NG125N 3 полюса, кривая B, 80 A	16 18801 NG125L 3 полюса, кривая C, 20 A 1
1808 1907 1906 1906 1907				
1808 1808 1807 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809	18358 C120N, 1 полюс, кривая C, 100 A	14	18666 NG125N 4 полюса, кривая B, 80 A	16 18804 NG125L3 полюса, кривая C, 40 A 1
SESS CIPA, Training, squared, CEA				16 18806 NG125L3 полюса, кривая C, 63 A 1
1606 CDR James James CDR A				
1809 City Treatment City Ci		14		16 18811 NG125L 4 полюса, кривая C, 16 A 1
1872 F. 1972				
1877 C. 1976 A 1970 A	18372 C120N, 4 полюса, кривая C, 80 A	14	18674 NG125N 4 полюса, кривая D, 125 A	16 18814 NG125L4 полюса, кривая C, 32 A 1
18-25 CDR Journal parts COA				
1849 CDR Tomor, parent 20A 15 1979 NGD291 Tomor, parent 27A 17 1850 NGD21 Tomor, parent 27A 1851 NGD21 Tomor, parent 28A 18 18 18 18 18 18 18	18438 С120Н, 1 полюс, кривая С, 10 А	15	18707 NG125H 1 полюс, кривая C, 20 A	17 18817 NG125L 4 полюса, кривая C, 63 A 1
1844 CPR				
1845 Citys. rounce, passed. CAA 19 1877 NiCitys! rounce, passed. CBA 19 1877 NiCitys! rounce, passed. CBA 19 1877 NiCitys! rounce, passed. CBA 19 1878 NiCitys! rou	18441 С120Н, 1 полюс, кривая С, 25 А	15	18710 NG125H 1 полюс, кривая C, 40 A	
1845 (1941), 1900. present, GA				17 18833 NG125L 1 полюс, кривая D, 25 A 1
1846 CERT,	18444 С120Н, 1 полюс, кривая С, 50 А	15	18713 NG125H 1 полюс, кривая C, 80 A	
1844 CERP more, person C, 125 177 NG/224 remove, person C, 22 4 7 1858 NG/224 more, person D, 10 1 1 1 1 1 1 1 1 1	18446 С120Н, 1 полюс, кривая С, 80 А	15	18715 NG125H 2 полюса, кривая C, 16 A	17 18836 NG125L 1 полюс, кривая D, 50 A 1
1846 CD291 Zemonca, repressed. 10 A 15 18778 MC12291 zemonca, repressed. CQ2 A 15 18779 MC12291 zemonca, repressed. CQ2 A 15 18779 MC12291 zemonca, repressed. CQ3 A 15 18729 MC12291 zemonca, repressed. CQ3 A 16 18729 MC12291 zemonca, repressed. CQ3 A 17 18449 MC1222 zemonca, repressed. CQ3 A 18 18729 MC12291 zemonca, repressed. CQ3 A 19 18729 MC12291 zemonca, repressed. CQ				
1845 C CERÉA * Zemonoca, repressed. C 20 A	18449 С120Н, 2 полюса, кривая С, 10 А	15	18718 NG125H 2 полюса, кривая C, 32 A	17 18839 NG125L 2 полюса, кривая D, 10 A 1
1845 (2019), Zenoraca, persente, C, 25 A 15 1872 MG/SEP Zenoraca, persente, D, 26 A 18 1874 MG/SEP Zenoraca, pe		15 15		
1845 C 1203, **Tomoca, spease C, 90 A 15 1872 NG1295 Romoca, spease C, 90 A 15 1872 NG1295 Romoca, spease C, 90 A 15 1875 NG1295 Romoca, spease C, 90 A 15 1875 NG1295 Romoca, spease C, 90 A 17 1884 W MST22, **Tomoca, spease C, 90 A 18 1847 NG129, **Tomoca, spease C, 90 A 18 1874 NG129, **Tomoca, spease C, 90 A 18 1875 NG1295 Romoca, spease C, 90 A 17 1884 W MST22, **Tomoca, spease C, 90 A 18 1874 NG129, **Tomoca, spease C, 90 A 19 1874 NG129,	18452 С120Н, 2 полюса, кривая С, 25 А	15	18721 NG125H 2 полюса, кривая C, 63 A	17 18842 NG125L 2 полюса, кривая D, 25 A 1
1845 CERPL - Zenonca, general, CSA 15 1872 MSIZEM - RODOCAL, passed, CJAA 17 1886 MSIZEM, Zenonca, general, DSA 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 1886 MSIZEM, Zenonca, general, DSA 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 1886 MSIZEM, Zenonca, general, DSA 18 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 1886 MSIZEM, Zenonca, general, DSA 18 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 1886 MSIZEM, Zenonca, general, DSA 18 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1872 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1873 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1873 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1873 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1873 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1873 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1873 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 1873 MSIZEM - RODOCAL, passed, CJAA 17 18 1884 MSIZEM, Zenonca, general, DSA 18 18 18 18 18 18 18 18 18 18 18 18 18		15 15		
1845 C2012 - соволос, уровае, С, 190 A 15 1872 NO 1223 - 100000, уровае, С, 25 A 15 1872 NO 1223 - 100000, уровае, С, 25 A 15 1872 NO 1223 - 100000, уровае, С, 26 A 15 1872 NO 1223 - 100000, уровае, С, 26 A 15 1873 NO 1223 - 100000, уровае, С, 26 A 16 1873 NO 1223 - 100000, уровае, С, 26 A 17 1865 NO 1223 - 100000, уровае, С, 26 A 18 1840 C2013, головос, уровае, С	18455 С120Н, 2 полюса, кривая С, 50 А			
18496 CG201; 3 romoca, passas C, 195A 15 81729 NG1224 3 romoca, passas C, 196A 16 81846 CG201; 3 romoca, passas C, 196A 17 81855 NG1223 romoca, passas C, 196A 18 81846 CG201; 3 romoca, passas C, 196A 1		15		
1840 (1204), Заповоса, довавае, С. 10A 15 18729 MOIZES 3 monocace, довавае, С. 10A 15 18720 MOIZES 3 monocace, довавае, С. 10A 16 18720 MOIZES 3 monocace, довавае, С. 10A 17 18850 MOIZES 3 monocace, довавае, С. 10A 18 18450 CIZOS, 3 monocace, довавае, С. 10A 18 18 18 18 18 18 18 18 18 18 18 18 18 1				
18462 (1204), Золовод, ривева С, 20A 15 1873 (101244 эполоса, ривева С, 20A 17 18852 (16125, 3 nonoca, ривева С, 20A 18 1846) (1204), Золовод, ривева С, 20A 18 1846) (1204), Золовод, ривева С, 20A 18 1847) (1204), Золовод, ривева С, 20A 19 1847)	18460 С120Н, 3 полюса, кривая С, 10 А	15	18729 NG125H 3 полюса, кривая C, 50 A	17 18850 NG125L 3 полюса, кривая D, 20 A 1
18465 (1209); Зотовоса, урована С. 25A 15 18723 (1012) A 17 1855 M (1202); Зотовоса, урована С. 25A 15 18723 (1012) A 17 1855 M (1202); Зотовоса, урована С. 25A 15 18723 (1012) A 1855 M (1202); Зотовоса, урована С. 25A 15 18723 M (1202) A 1855 M (1202); Зотовоса, урована С. 25A 17 1855 M (1202); Зотовоса, урована С. 25A 18 1873 M (1202); Зотовоса, урована С. 25A 18 1873 M (1202); Зотовоса, урована С. 25A 18 1873 M (1202); Зотовоса, урована С. 25A 18 1874 M (1202); Зотовоса, урована С. 25A 18 1				
1845 CI2H, 3 nonica, presso C, 90A	18463 С120Н, 3 полюса, кривая С, 25 А	15	18732 NG125H 4 полюса, кривая C, 10 A	17 18853 NG125L 3 полюса, кривая D, 40 A 1
1846 C2294, Snomcca, persent C, SSA				
18466 CEPH, Francoca, prisses C, 100 A 15 1873 NG 19254 francoca, prisses C, 400 A 17 1885 NG 19254 francoca, prisses D, 16A 18 18470 CEPH, Francoca, prisses C, 10A 17 1885 NG 19254 francoca, prisses D, 10A 18 18470 CEPH, Francoca, prisses C, 10A 17 1885 NG 19254 francoca, prisses D, 10A 18 18470 CEPH, Francoca, prisses C, 1	18466 С120Н, 3 полюса, кривая С, 50 А	15	18735 NG125H 4 полюса, кривая C, 25 A	17 18856 NG125L 3 полюса, кривая D, 80 A 1
1846 CEPUH, Annoca, paperas C, 192A 15 1878 NGEPSH Annoca, paperas C, 50A 17 1886 NGEPSL Annoca, paperas D, 25A 18 1871 CEPUH, Annoca, paperas C, 192A 18 1872 CEPUH, Annoca, paperas C, 192A 18 18 18 18 18 18 18 1				
1847 C 122H, 4 попоса, дривая С, 16A 15 1874 N 1612S-1 попоса, дривая С, 16A 15 1874 N 1612S-1 попоса, дривая С, 16A 16 1872 C 122H, 4 попоса, дривая С, 26A 15 1874 N 1612S-1 попос, дривая В, 10A 18 1882 N 1612S-1 попоса, дривая С, 26A 15 1874 N 1612S-1 попос, дривая В, 10A 18 1885 N 1612S-1 попоса, дривая С, 26A 18 1886 N 1612S-1 попоса, дривая С, 26A 18 1876 C 12CH, 4 попоса, дривая С, 26A 18 1886 N 1612S-1 попоса, дривая С, 26A 18 1887 N 1612S-1 попоса, дривая С, 26A 18 1887 N 1612S-1 попос, дривая В, 26A 18 1887 N 1612S-1 попоса, дривая С, 26A 18 1886 N 1612S-1 попоса, дривая С, 26A 18 1890 N 1612S-1 попоса, дривая В, 10A 18	18469 С120Н, 3 полюса, кривая С, 100 А	15		
18473 (1294, 4 monoca, pymean C, 25A 15 18748 NG1251, 1 monoc, pymean B, 16A 18 18685 NG1254, 4 monoca, pymean D, 50A 18 18474 (1294, 4 monoca, pymean D, 50A 18 18 18474 (1294, 4 monoca, pymean D, 50A 18 18 18474 (1294, 4 monoca, pymean D, 50A 18 18 18 18 18 18 18 18 18 18 18 18 18		15		17 18861 NG125L4 полюса, кривая D, 32 A 1
18476 (120H, 4 monoca, spensar C, 25A 15 18748 NG12EL I monoc, spensar B, 25A 18 18868 NG12EL 4 monoca, spensar B, 03A 18 18476 (120H, 4 monoca, spensar B, 03A 18 18476 NG12EL I monoc, spensar B, 25A 18 18676 NG12EL 4 monoca, spensar B, 03A 18 18477 (120H, 4 monoca, spensar B, 03A 15 18748 NG12EL I monoc, spensar B, 04A 18 18477 (120H, 4 monoca, spensar B, 03A 15 18748 NG12EL I monoc, spensar B, 04A 18 18477 (120H, 4 monoca, spensar B, 03A 18 18478 NG12EL MONOCA B, 03A 184				
18476 C120H, 4 nonoca, pureas C, 50 A 5 1874 NG12E1, 1 nonoce, pureas B, 40 A 8 1900	18474 С120Н, 4 полюса, кривая С, 25 А	15	18743 NG125L 1 полюс, кривая B, 20 A	18 18864 NG125L 4 полюса, кривая D, 63 A 1
19477 (120H, 4 nonoca, pyessas, CSA 15 1874 NG12E, 1 nonoc, pyessa B, 60A 18 19000 Vig NG12E, AC ~ 30 мA, 2 nonoca, CSA 36 19479 (120H, 4 nonoca, pyessas, CSA 15 1874 NG12E, 1 nonoc, pyessa B, 60A 18 19000 Vig NG12E, AC ~ 30 мA, 2 nonoca, CSA 37 37 18481 (120H, 4 nonoca, pyessas, C) 10A 15 1874 NG12E, 1 nonoca, pyessa B, 60A 18 19001 Vig NG12E, AC ~ 30 мA, 2 nonoca, CSA 37 37 18481 (120H, 4 nonoca, pyessas, C) 10A 15 1874 NG12E, 1 nonoca, pyessa B, 60A 18 19001 Vig NG12E, AC ~ 30 мA, 2 nonoca, CSA 37 37 18569 Vig C120, 30 MA 35 1875 NG12E, 2 nonoca, pyessa B, 16A 18 19003 Vig NG12E, AC ~ 30 мA, 4 nonoca, CSA 37 37 18569 Vig C120, 30 MA 35 1875 NG12E, 2 nonoca, pyessa B, 60A 18 19004 Vig NG12E, AC ~ 30 мA, 4 nonoca, CSA 37 18569 Vig C120, 30 MA 35 1875 NG12E, 2 nonoca, pyessa B, 60A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 18625 NG12E, AC ~ 30 MA, 4 nonoca, CSA 37 1875 NG12E, 2 nonoca, pyessa B, 25A 18 19005 Vig NG12E, A				
19479 120H, 4 nomoca, puress C, 80 A	18477 С120Н, 4 полюса, кривая С, 50 А	15	18746 NG125L 1 полюс, кривая B, 40 A	18
18480 (12094, fromoca, ppissas C, 100 A 15 1879 NGIZEL Innonec, ppissas B, 80 A 18 19001 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 35 1875 NGIZEL 2 noneca, ppissas B, 16 A 18 19002 Vigi NGIZE, AC -, 300 AA, 3 1875 NGIZEL 2 noneca, ppissas B, 16 A 18 19002 Vigi NGIZE, AC -, 300 AA, 3 1875 NGIZEL 2 noneca, ppissas B, 16 A 18 19002 Vigi NGIZE, AC -, 300 AA, 3 1875 NGIZEL 2 noneca, ppissas B, 16 A 18 19003 Vigi NGIZE, AC -, 300 AA, 3 1875 NGIZEL 2 noneca, ppissas B, 25 A 18 19004 Vigi NGIZE, AC -, 300 AA, 4 noneca, 63 A 36 1875 NGIZEL 2 noneca, ppissas B, 25 A 18 19005 Vigi NGIZE, AC -, 300 AA, 4 noneca, 63 A 36 1875 NGIZEL 2 noneca, ppissas B, 26 A 18 19005 Vigi NGIZE, AC -, 300 AA, 4 noneca, 63 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 4 noneca, 63 A 10 A 200 Rep. Toxa 18 1901 NGIZEL 2 noneca, ppissas B, 30 A 18 1900 Vigi NGIZE, AC -, 300 AA, 4 noneca, 63 A 10 A 200 Rep. Toxa 18 1900 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 10 A 200 Rep. Toxa 18 1900 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 10 A 200 Rep. Toxa 18 1900 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 10 A 200 Rep. Toxa 18 1900 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 37 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 37 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 2 noneca, 63 A 37 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 4 noneca, 63 A 37 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 4 noneca, 63 A 37 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 4 noneca, 63 A 37 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 4 noneca, 63 A 37 A 36 18 1901 Vigi NGIZE, AC -, 300 AA, 4 noneca, 63 A 37 A				10
18548 Vig C120, 300 MA 35 1875 NG1522. Promoca, кривав В, 16 A 18759 Vig C120, 300 MA 35 1875 NG1522. Promoca, кривав В, 16 A 1870 NG1521, 2 Promoca, кривав В, 20 A 18 19005 Vig NG152. AC - 300 MA, 4 nonoca, 83 A 37 18750 Vig C120, 300 MA 35 1875 NG1522. Promoca, кривав В, 25 A 18 19005 Vig NG152. AC - 300 MA, 4 nonoca, 83 A 38 18750 Vig C120, 300 MA 35 1875 NG1522. Promoca, кривав В, 22 A 18 19005 Vig NG152. AC - 300 MA, 4 nonoca, 83 A 38 18750 Vig C120, 300 MA 35 1875 NG1522. Promoca, кривав В, 24 A 18 19005 Vig NG152. AC - 300 MA, 4 nonoca, 83 A 37 18750 Vig NG152. AC - 300 MA, 4 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 83 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38 18750 Vig NG152. AC - 300 MA, 2 nonoca, 80 A 38	18480 С120Н, 4 полюса, кривая С, 100 А	15	18749 NG125L 1 полюс, кривая B, 80 A	18 19001 Vigi NG125, AC ~, 300 мA, 2 полюса, 63 A 3
18699 Vigi C129, 30 мA 35 18752 Vigi C129, 30 мA 35 18753 NC182 L 2 nonoca, кривав В, 20 A 18 19004 Vigi NC125, AC — 300 мA, 4 nonoca, 63 A 37 18610 NC125N 1 nonoc, кривав С, 10 A 16 18754 NC125L 2 nonoca, кривав В, 20 A 18 19008 Vigi NC125, AC, 300 мA, 2 nonoca, 63 A 110-220 В пер. тока 36 1811 NC125N 1 nonoc, кривав С, 10 A 16 18755 NC125L 2 nonoca, кривав В, 30 A 18 19008 Vigi NC125, AC, 300 мA, 2 nonoca, 63 A 110-220 В пер. тока 36 1811 NC125N 1 nonoc, кривав С, 20 A 16 18756 NC125L 2 nonoca, кривав В, 30 A 18 19010 Vigi NC125, AC, 30 MA, 2 nonoca, 63 A 38 18613 NC125N 1 nonoc, кривав С, 25 A 16 18756 NC125L 2 nonoca, кривав В, 30 A 18 19010 Vigi NC125, AC, 30 MA, 2 nonoca, 63 A 36 18613 NC125N 1 nonoc, кривав С, 20 A 16 18758 NC125L 2 nonoca, кривав В, 30 A 18 19010 Vigi NC125, AC, 30 MA, 2 nonoca, 63 A 36 18615 NC125N 1 nonoc, кривав С, 40 A 16 18758 NC125L 2 nonoca, кривав В, 40 A 18 19013 Vigi NC125, AC, 30 MA, 3 nonoca, 63 A 37 18616 NC125N 1 nonoc, кривав С, 50 A 16 18769 NC125L 3 nonoca, кривав В, 50 A 18 19015 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 36 18618 NC125N 1 nonoc, кривав С, 63 A 16 18764 NC125L 3 nonoca, кривав В, 50 A 18 19015 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 37 18618 NC125N 1 nonoc, кривав С, 63 A 18 19015 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 37 18618 NC125N 1 nonoc, кривав С, 63 A 18 19015 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 37 18618 NC125N 1 nonoc, кривав В, 50 A 18 19015 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 37 18618 NC125N 1 nonoc, кривав С, 63 A 18 19015 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 37 18618 NC125N 1 nonoca, кривав В, 50 A 18 19015 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 37 18618 NC125N 1 nonoca, кривав В, 50 A 18 19015 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 37 18622 NC125N 1 nonoca, кривав В, 50 A 18 19015 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 37 18622 NC125N 1 nonoca, кривав В, 50 A 18 19015 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 37 18622 NC125N 1 nonoca, кривав В, 50 A 18 19013 Vigi NC125, AC, 30 MA, 4 nonoca, 63 A 37 18625 NC125N 1 nonoca, кривав В, 50 A 18 19013 Vig	18548 Vigi C120, 300 S мА			
18610 NGIZSM 1 попис, кривав С, 10A 16 1875 NGISE, 1 пописа, кривав С, 10A 16 1875 NGISE, 1 пописа, кривав В, 40A 18 19009 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A, 110-220 в пер. тока 37 18612 NGIZSM 1 попис, кривав С, 20A 16 1875 NGISE, 1 пописа, кривав В, 50A 18 19009 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A, 310-220 в пер. тока 37 18613 NGIZSM 1 попис, кривав С, 22A 16 1875 NGISE, 1 пописа, кривав В, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A, 36 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 2 пописа, 63A 18 19010 Vigi NGIZS, A R.; 30 м.А, 4 пописа, 63A 18 19010 Vigi		35 35		18 19004 Vigi NG125, AC ~, 30 мA, 4 полюса, 63 A 3
18611 NGIZSH 1 полюс, кривая С, 16A 16 18/55 NGIZSL 2 полюса, кривая В, 40A 18 1900 Vigi NGIZS, A Ж, 300 мA, 2 полюса, 63A, 16 1875 NGIZSL 2 полюса, кривая В, 50A 18 1901 Vigi NGIZS, A Ж, 300 мA, 2 полюса, 63A 36 36 18615 NGIZSH 1 полюс, кривая С, 25A 16 1875 NGIZSL 2 полюса, кривая В, 80A 18 1901 Vigi NGIZS, A Ж, 300 мA, 2 полюса, 63A 36 36 18615 NGIZSH 1 полюс, кривая С, 40A 16 18759 NGIZSL 2 полюса, кривая В, 80A 18 1901 Vigi NGIZS, A Ж, 300 мA, 3 полюса, 63A 36 36 18615 NGIZSH 1 полюс, кривая С, 40A 16 18759 NGIZSL 3 полюса, кривая В, 16A 18 19014 Vigi NGIZS, A Ж, 300 мA, 3 полюса, 63A 36 36 18615 NGIZSH 1 полюс, кривая С, 50A 16 18760 NGIZSL 3 полюса, кривая В, 16A 18 19015 Vigi NGIZS, A Ж, 300 мA, 4 полюса, 63A 37 18618 NGIZSH 1 полюс, кривая С, 63A 16 18761 NGIZSL 3 полюса, кривая В, 26A 18 19015 Vigi NGIZS, A Ж, 300 мA, 4 полюса, 63A 37 18622 NGIZSH 2 полюса, кривая В, 22A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 2 полюса, 63A 37 18622 NGIZSH 2 полюса, кривая В, 22A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 2 полюса, 63A 37 18622 NGIZSH 2 полюса, кривая В, 22A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 2 полюса, 63A 37 18622 NGIZSH 2 полюса, кривая В, 22A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 3 полюса, 63A 37 18622 NGIZSH 2 полюса, кривая В, 22A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 4 полюса, 63A 37 18624 NGIZSH 2 полюса, кривая В, 20A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 4 полюса, 63A 37 18624 NGIZSH 2 полюса, кривая В, 20A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 4 полюса, 63A 37 18624 NGIZSH 2 полюса, кривая В, 20A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 4 полюса, 63A 37 18624 NGIZSH 2 полюса, кривая В, 20A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 4 полюса, 63A 37 18624 NGIZSH 2 полюса, кривая В, 20A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 4 полюса, 63A 37 18624 NGIZSH 2 полюса, кривая В, 20A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 4 полюса, 63A 37 18624 NGIZSH 2 полюса, кривая В, 20A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 4 полюса, 63A 37 18624 NGIZSH 2 полюса, кривая В, 20A 18 1903 Vigi NGIZS, A Ж, 300 LS MA, 4 полюса, кривая В, 20A 18 1903 Vig	18610 NG125N 1 полюс, кривая C, 10 A	16	18754 NG125L 2 полюса, кривая B, 32 A	18 19008 Vigi NG125, А 🖼 , 30 мА, 2 полюса, 63 А, 110-220 В пер. тока 3
18613 NG12SN 1 полос, кривая С, 25 A 16 1875 NG12SL 2 полоса, кривая В, 80 A 18 19012 Vigi NG12S, A. X., 300 MA, 2 полоса, 63 A 36 18615 NG12SN 1 полос, кривая С, 40 A 16 18759 NG12SL 3 полоса, кривая В, 10 A 18 19014 Vigi NG12S, A. X., 300 MA, 3 полоса, 63 A 36 NG12SN 1 полос, кривая С, 50 A 16 18769 NG12SL 3 полоса, кривая В, 10 A 18 19015 Vigi NG12S, A. X., 300 MA, 4 полоса, 63 A 36 NG12SN 1 полос, кривая С, 50 A 16 18760 NG12SL 3 полоса, кривая В, 10 A 18 19015 Vigi NG12S, A. X., 300 MA, 4 полоса, 63 A 36 NG12SN 1 полос, кривая В, 10 A 18 19015 Vigi NG12S, A. X., 300 MA, 4 полоса, 63 A 36 NG12SN 1 полос, кривая В, 10 A 18 19015 Vigi NG12S, A. X., 300 MA, 4 полоса, 63 A 36 NG12SN 1 полос, кривая В, 10 A 18 19015 Vigi NG12S, A. X., 300 MA, 4 полоса, 63 A 37 NG18SN 1 полос, кривая В, 20 A 18 19015 Vigi NG12S, A. X., 300 MA, 4 полоса, 63 A 37 NG18SN 1 полос, кривая В, 20 A 18 19030 Vigi NG12S, A. X., 300 MA, 4 полоса, 63 A 37 NG18SN 1 полос, кривая В, 20 A 18 19030 Vigi NG12S, A. X., 300 SMA, 2 полоса, кривая В, 20 A 18 19030 Vigi NG12S, A. X., 300 SMA, 2 полоса, кривая В, 20 A 18 19030 Vigi NG12S, A. X., 300 SMA, 2 полоса, кривая В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полоса, 63 A 37 NG18SN 2 полоса, кривая В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полоса, 63 A 37 NG18SN 2 полоса, кривая В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полоса, 63 A 37 NG18SN 2 полоса, кривая В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полоса, 63 A 37 NG18SN 2 полоса, кривая В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полоса, 63 A 37 NG18SN 2 полоса, кривая В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полоса, 63 A 37 NG18SN 2 полоса, кривая В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полоса, 63 A 37 NG18SN 2 полоса, кривая В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полоса, 63 A 37 NG18SN 2 полоса, кривая В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полоса, 63 A 37 NG18SN 2 полоса, кривая В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полоса, крива В, 30 A 18 19030 Vigi NG12S, A. X., 300 SMA, 3 полос				18 19009 Vigi NG125, А 📆, 300 мА, 2 полюса, 63 А, 110-220 В пер. тока 3
18615 NG12SN 1 полюс, кривая С, 40 A 16 18759 NG12SL 3 полюса, кривая В, 10 A 18 19015 Vigi NG12S, A R., 30 M.A, 4 полюса, 63 A 37 18617 NG12SN 1 полюс, кривая С, 63 A 16 18761 NG12SL 3 полюса, кривая В, 20 A 18 19016 Vigi NG12S, A R., 30 M.A, 4 полюса, 63 A 37 18618 NG12SN 1 полюс, кривая С, 80 A 16 18762 NG12SL 3 полюса, кривая В, 20 A 18 19016 Vigi NG12S, A R., 30 M.A, 4 полюса, 63 A 37 18618 NG12SN 1 полюс, кривая С, 10 A 16 18762 NG12SL 3 полюса, кривая В, 22 A 18 19030 Vigi NG12S, A R., 30 M.B, 4 полюса, 63 A 37 18628 NG12SN 2 полюса, кривая С, 16 A 18762 NG12SL 3 полюса, кривая В, 22 A 18 19030 Vigi NG12S, A R., 30 MG1S, A A, 100 NG1 MA, 4 полюса, 63 A 37 18628 NG12SN 2 полюса, кривая С, 16 A 18764 NG12SL 3 полюса, кривая В, 40 A 18 19032 Vigi NG12S, A R., 30 MG1S, A A, 100 NG1 MA, 4 полюса, 63 A 37 18628 NG12SN 2 полюса, кривая С, 25 A 16 18766 NG12SL 3 полюса, кривая В, 63 A 18 19033 Vigi NG12S, A R., 30 MG1 MA, 4 полюса, 63 A 37 18628 NG12SN 2 полюса, кривая С, 25 A 16 18766 NG12SL 3 полюса, кривая В, 63 A 18 19033 Vigi NG12S, A R., 100 NG1 MA, 4 полюса, 63 A 37 18625 NG12SN 2 полюса, кривая С, 25 A 16 18766 NG12SL 3 полюса, кривая В, 63 A 18 19033 Vigi NG12S, A R., 100 NG1 MA, 4 полюса, 63 A 37 18625 NG12SN 2 полюса, кривая С, 25 A 16 18766 NG12SL 3 полюса, кривая В, 63 A 18 19033 Vigi NG12S, A R., 100 NG1 MA, 4 полюса, 63 A 37 18625 NG12SN 2 полюса, кривая С, 50 A 16 18766 NG12SL 4 полюса, кривая В, 63 A 18 19033 Vigi NG12S, A R., 100 NG1 MA, 4 полюса, 63 A 37 18625 NG12SN 2 полюса, кривая С, 50 A 16 18768 NG12SL 4 полюса, кривая В, 60 A 18 19033 Vigi NG12S, A R., 30 0.30 00 MA, VSR, 4 полюса, 63 A 37 18625 NG12SN 2 полюса, кривая С, 50 A 16 18769 NG12SL 4 полюса, кривая В, 60 A 18 19035 Vigi NG12S, A R., 30 0.30 00 MA, VSR, 4 полюса, кривая В, 60 A 18 19035 Vigi NG12S, A R., 30 0.30 00 MA, VSR, 4 полюса, кривая В, 60 A 18 19035 Vigi NG12S, A R., 30 0.30 00 MA, VSR, 4 полюса, кривая В, 60 A 18 19044 Vigi NG12S, A R., 30 0.30 00 MA, VSR, 4 полюса, кривая В, 60 A 18 19044 Vigi NG12S, A R., 30 0.30 00	18613 NG125N 1 полюс, кривая C, 25 A	16	18757 NG125L 2 полюса, кривая B, 63 A	18 19012 Vigi NG125, А 📶, 300 мА, 2 полюса, 63 А 3
18616 NG12SN 1 полюс, кривая С, 50 A 16 18760 NG12SL 3 полюса, кривая В, 20 A 18 19015 Vigi NG125, A £3, 30 MA, 4 полюса, 63 A 36 18617 NG12SN 1 полюс, кривая С, 63 A 16 18760 NG12SL 3 полюса, кривая В, 20 A 18 19016 Vigi NG125, A £3, 300 MA, 4 полюса, 63 A 37 18618 NG12SN 1 полюсь, кривая С, 10 A 16 18763 NG12SL 3 полюса, кривая В, 20 A 18 19030 Vigi NG125, A £3, 300 Si MA, 4 полюса, 63 A 37 18622 NG12SN 2 полюса, кривая С, 10 A 16 18763 NG12SL 3 полюса, кривая В, 20 A 18 19031 Vigi NG125, A £3, 300 Si MA, 2 полюса, 63 A 37 18622 NG12SN 2 полюса, кривая С, 20 A 16 18765 NG12SL 3 полюса, кривая В, 80 A 18 19033 Vigi NG125, A £3, 300 Si MA, 3 полюса, 63 A 37 18624 NG12SN 2 полюса, кривая С, 20 A 16 18766 NG12SL 3 полюса, кривая В, 80 A 18 19033 Vigi NG125, A £3, 300 Si MA, 3 полюса, 63 A 37 18625 NG12SN 2 полюса, кривая С, 20 A 16 18766 NG12SL 3 полюса, кривая В, 80 A 18 19034 Vigi NG125, A £3, 300 MA, 4 полюса, 63 A 37 186				
18618 NG125N 1 полюс, кривая С, 80 A 16 18762 NG125L3 полюса, кривая В, 25 A 18 19031 Vigi NG125, A X, 300 [S] мА, 2 полюса, 63 A 37 18622 NG125N 2 полюса, кривая В, 40 A 18 19031 Vigi NG125, A X, 300 [S] мА, 2 полюса, 63 A 37 18622 NG125N 2 полюса, кривая В, 40 A 18 19032 Vigi NG125, A X, 300 [S] мА, 2 полюса, 63 A 37 18622 NG125N 2 полюса, кривая В, 40 A 18 19032 Vigi NG125, A X, 300 [S] мА, 2 полюса, 63 A 37 18623 NG125N 2 полюса, кривая В, 40 A 18 19033 Vigi NG125, A X, 300 [S] мА, 4 полюса, 63 A 37 18625 NG125N 2 полюса, кривая С, 25 A 16 18766 NG125L3 полюса, кривая В, 60 A 18 19033 Vigi NG125, A X, 300 [S] мА, 4 полюса, 63 A 37 18625 NG125N 2 полюса, кривая С, 32 A 16 18767 NG125L3 полюса, кривая В, 80 A 18 19033 Vigi NG125, A X, 300 [S] мА, 4 полюса, 63 A 37 18625 NG125N 2 полюса, кривая С, 32 A 16 18767 NG125L3 полюса, кривая В, 80 A 18 19035 Vigi NG125, A X, 300 [S] мА, 4 полюса, 63 A 37 18625 NG125N 2 полюса, кривая С, 50 A 16 18768 NG125L3 полюса, кривая В, 10 A 18 19035 Vigi NG125, A X, 300 (S] мА, 4 полюса, 63 A 37 18625 NG125N 2 полюса, кривая С, 50 A 16 18768 NG125L3 полюса, кривая В, 10 A 18 19035 Vigi NG125, A X, 300 (S] мА, 4 полюса, 63 A 37 18625 NG125N 2 полюса, кривая С, 50 A 16 18768 NG125L3 полюса, кривая В, 10 A 18 19035 Vigi NG125, A X, 300 (S) мА, 4 полюса, 63 A 37 18626 NG125N 2 полюса, кривая С, 50 A 16 18770 NG125L3 полюса, кривая В, 20 A 18 19035 Vigi NG125, A X, 300 (S) мА, 4 полюса, 63 A 37 18628 NG125N 2 полюса, кривая С, 60 A 18 19036 Vigi NG125, A X, 300 (S) мА, 4 полюса, 125 A 36 18629 NG125N 2 полюса, кривая С, 60 A 18 19039 Vigi NG125, A X, 300 (S) мА, 4 полюса, 125 A 36 18629 NG125N 2 полюса, кривая С, 60 A 18 19034 Vigi NG125, A X, 300 (S) мА, 4 полюса, 125 A 37 18628 NG125N 3 полюса, кривая С, 60 A 18 19044 Vigi NG125, A X, 300 (S) мА,	18616 NG125N 1 полюс, кривая C, 50 A	16	18760 NG125L 3 полюса, кривая В, 16 A	18 19015 Vigi NG125, А 🛪 , 30 мА, 4 полюса, 63 А 3
18621 NG125N 2 полюса, кривая С, 10A 16 18763 NG125L 3 полюса, кривая В, 32A 18 19031 Vigi NG125, A Ж, 1000 S MA, 2 полюса, 63A 37 18628 NG125N 2 полюса, кривая С, 20A 16 18764 NG125L 3 полюса, кривая В, 50A 18 19032 Vigi NG125, A Ж, 300 S MA, 3 полюса, 63A 37 18624 NG125N 2 полюса, кривая С, 20A 16 18766 NG125L 3 полюса, кривая В, 50A 18 19032 Vigi NG125, A Ж, 300 S MA, 4 полюса, 63A 37 18624 NG125N 2 полюса, кривая С, 20A 16 18766 NG125L 3 полюса, кривая В, 63A 18 19033 Vigi NG125, A Ж, 300 S MA, 4 полюса, 63A 37 18625 NG125N 2 полюса, кривая С, 32A 16 18766 NG125L 3 полюса, кривая В, 80A 18 19035 Vigi NG125, A Ж, 300 S MA, 4 полюса, 63A 37 18627 NG125N 2 полюса, кривая С, 40A 16 18768 NG125L 4 полюса, кривая В, 10A 18 19035 Vigi NG125, A Ж, 300 S MA, 4 полюса, 63A 37 18627 NG125N 2 полюса, кривая С, 63A 16 18776 NG125L 4 полюса, кривая В, 10A 18 19037 Vigi NG125, A Ж, 300 S MA, 4 полюса, 63A 37 18627 NG125N 2 полюса, кривая С, 63A 16 18777 NG125L 4 полюса, кривая В, 20A 18 19037 Vigi NG125, A Ж, 300 S MA, 4 полюса, 63A 37 18628 NG125N 2 полюса, кривая С, 63A 16 18777 NG125L 4 полюса, кривая В, 25A 18 19039 Vigi NG125, A Ж, 300 M, 4 полюса, 125A 36 18633 NG125N 3 полюса, кривая С, 10A 16 18777 NG125L 4 полюса, кривая В, 25A 18 19044 Vigi NG125, A Ж, 300 M, 4 полюса, 125A 37 18634 NG125N 3 полюса, кривая С, 10A 18 19044 Vigi NG125, A Ж, 300 M, 4 полюса, 125A 37 18634 NG125N 3 полюса, кривая С, 20A 16 18778 NG125L 4 полюса, кривая В, 80A 18 19044 Vigi NG125, A Ж, 300 M, 4 полюса, 125A 37 18634 NG125N 3 полюса, кривая С, 20A 16 18778 NG125L 4 полюса, кривая В, 80A 18 19044 Vigi NG125, A Ж, 300 M, 4 полюса, 125A 37 18635 NG125N 3 полюса, кривая С, 20A 16 18777 NG125L 4 полюса, кривая В, 80A 18 19044 Vigi NG125, A Ж, 300 M, 4 полюса, 125A 37 18636 NG125N 3 полюса, кри				18 19030 Vigi NG125. А ж. 300 S мА. 2 полюса. 63 А 3
18624 NG125N 2 полюса, кривая С, 25A 16 18765 NG125L 3 полюса, кривая В, 63A 18 19033 Vigi NG125, A ST, 1000 [S MA, 4 полюса, 63A 37 18625 NG125N 2 полюса, кривая С, 25A 16 18766 NG125L 3 полюса, кривая В, 63A 18 19033 Vigi NG125, A ST, 300 [S MA, 4 полюса, 63A 37 18625 NG125N 2 полюса, кривая С, 32A 16 18767 NG125L 3 полюса, кривая В, 60A 18 19035 Vigi NG125, A ST, 300 [S MA, 4 полюса, 63A 37 18626 NG125N 2 полюса, кривая С, 50A 16 18768 NG125L 4 полюса, кривая В, 60A 18 19035 Vigi NG125, A ST, 300 [S MA, 4 полюса, 63A 37 18626 NG125N 2 полюса, кривая С, 50A 16 18768 NG125L 4 полюса, кривая В, 60A 18 19036 Vigi NG125, A ST, 300 -3000 MA, I/S/R, 3 полюса, 63A 37 18628 NG125N 2 полюса, кривая С, 63A 16 18770 NG125L 4 полюса, кривая В, 60A 18 19037 Vigi NG125, A ST, 30 MA, 3 полюса, 63A 37 18638 NG125N 2 полюса, кривая С, 63A 18 19037 Vigi NG125, A ST, 30 MA, 3 полюса, 125A 36 18629 NG125N 3 полюса, кривая С, 10A 16 18777 NG125L 4 полюса, кривая В, 20A 18 19041 Vigi NG125, A ST, 30 MA, 4 полюса, 125A 36 18629 NG125N 3 полюса, кривая С, 10A 16 18778 NG125L 4 полюса, кривая В, 20A 18 19042 Vigi NG125, A ST, 30 MA, 4 полюса, 125A 37 18633 NG125N 3 полюса, кривая С, 20A 16 18778 NG125L 4 полюса, кривая В, 50A 18 19044 Vigi NG125, A ST, 300-1000 MA, I/S, R, 3 полюса, 125A 37 18636 NG125N 3 полюса, кривая С, 25A 16 18775 NG125L 4 полюса, кривая В, 50A 18 19044 Vigi NG125, A ST, 300-3000 MA, I/S, R, 3 полюса, 125A 37 18636 NG125N 3 полюса, кривая С, 25A 16 18776 NG125L 4 полюса, кривая В, 50A 18 19044 Vigi NG125, A ST, 300-3000 MA, I/S, R, 3 полюса, 125A 37 18638 NG125N 3 полюса, кривая С, 25A 16 18776 NG125L 4 полюса, кривая В, 50A 18 19044 Vigi NG125, A ST, 300-3000 MA, I/S, R, 3 полюса, 125A 37 18638 NG125N 3 полюса, кривая С, 40A 16 18777 NG125L 1 полюс, кривая С, 10A 18 19044	18621 NG125N 2 полюса, кривая C, 10 A	16	18763 NG125L 3 полюса, кривая B, 32 A	18 19031 Vigi NG125, А 📶 , 1000 🗵 мА, 2 полюса, 63 А 3
18624 NG125N 2 полюса, кривая С, 25A 16 18766 NG125L 3 полюса, кривая В, 80A 18 19035 Vigi NG125, A G, 300 [S] м., 4 полюса, 63A 37 18625 NG125N 2 полюса, кривая С, 32A 16 18768 NG125L 3 полюса, кривая В, 80A 18 19035 Vigi NG125, A G, 300 [S] м., 4 полюса, 63A 37 18627 NG125N 2 полюса, кривая С, 40A 16 18768 NG125L 4 полюса, кривая В, 10A 18 19036 Vigi NG125, A G, 300 300 м., VS/R, 3 полюса, 63A 37 18627 NG125N 2 полюса, кривая С, 63A 16 18769 NG125L 4 полюса, кривая В, 10A 18 19037 Vigi NG125, A G, 300 300 м., VS/R, 4 полюса, 63A 37 18627 NG125N 2 полюса, кривая С, 63A 16 18770 NG125L 4 полюса, кривая В, 20A 18 19037 Vigi NG125, A G, 300 300 м., VS/R, 4 полюса, 63A 37 18627 NG125N 2 полюса, кривая С, 63A 16 18771 NG125L 4 полюса, кривая В, 20A 18 19037 Vigi NG125, A G, 30 м., 4 полюса, 125A 36 18628 NG125N 3 полюса, кривая С, 10A 16 18772 NG125L 4 полюса, кривая В, 20A 18 19042 Vigi NG125, A G, 30 м., 4 полюса, 125A 37 18635 NG125N 3 полюса, кривая С, 20A 16 18774 NG125L 4 полюса, кривая В, 40A 18 19042 Vigi NG125, A G, 300 м., 4 полюса, 125A 37 18635 NG125N 3 полюса, кривая С, 20A 16 18775 NG125L 4 полюса, кривая В, 63A 18 19042 Vigi NG125, A G, 300 м., 4 полюса, 125A 37 18636 NG125N 3 полюса, кривая С, 20A 16 18776 NG125L 4 полюса, кривая В, 63A 18 19047 Vigi NG125, A G, 300 300 м., I/S, R, 4 полюса, 125A 37 18636 NG125N 3 полюса, кривая С, 32A 16 18777 NG125L 4 полюса, кривая В, 63A 18 19047 Vigi NG125, A G, 300 300 м., I/S, R, 4 полюса, 125A 37 18636 NG125N 3 полюса, кривая С, 40A 18 19047 Vigi NG125, A G, 300 300 м., I/S, R, 4 полюса, 125A 37 18636 NG125N 3 полюса, кривая С, 40A 18 19047 Vigi NG125, A G, 300 300 м., I/S, R, 4 полюса, кривая С, 63A 16 18778 NG125L 1 полюс, кривая С, 10A 18 19053 Vigi NG125, A G, 300 300 м., I/S, R, 4 полюса, 125A 37 18639 NG125N 3 полюса, кривая С, 63A 16 18778 NG125L 1 полюс, кривая С, 20A 18 19058 Vigi NG125, A G, 300 300 м., I/S, R, 4 полюса, 125A 37 18639 NG125N 3 полюса, кривая С, 63A 16 1878 NG125L 1 полюс, кривая С, 20A 18 19058 Vigi NG125, A G, 300 300 м., I/S, R,				18 19033 Vigi NG125. A м. 1000 S мА. 3 полюса, 63 А 3
18627 NG125N 2 полоса, кривая С, 50 A 16 18768 NG125L 4 полоса, кривая В, 10 A 18 19036 Vigi NG125, A 36, 300-3000 мA, I/S/R, 4 полоса, 63 A 37 18628 NG125N 2 полоса, кривая С, 50 A 16 18770 NG125L 4 полоса, кривая В, 20 A 18 19037 Vigi NG125, A 37, 30 мA, 3 полоса, 125 A 36 18629 NG125N 2 полоса, кривая С, 60 A 16 18771 NG125L 4 полоса, кривая В, 22 A 18 19034 Vigi NG125, A 37, 30 мA, 3 полоса, 125 A 36 18629 NG125N 3 полоса, кривая С, 10 A 16 18772 NG125L 4 полоса, кривая В, 22 A 18 19042 Vigi NG125, A 37, 30 мA, 4 полоса, 125 A 37 18633 NG125N 3 полоса, кривая С, 20 A 16 18773 NG125L 4 полоса, кривая В, 50 A 18 19042 Vigi NG125, A 37, 300-400 мA, I/S, 3 полоса, 125 A 37 18633 NG125N 3 полоса, кривая С, 20 A 16 18773 NG125L 4 полоса, кривая В, 50 A 18 19044 Vigi NG125, A 37, 300-1000 мA, I/S, 3 полоса, 125 A 37 18635 NG125N 3 полоса, кривая С, 20 A 16 18775 NG125L 4 полоса, кривая В, 50 A 18 19047 Vigi NG125, A 37, 300-3000 мA, I/S, 3 полоса, 125 A 37 18636 NG125N 3 полоса, кривая С, 30 A 16 18776 NG125L 4 полоса, кривая В, 60 A 18 19047 Vigi NG125, A 37, 300-3000 мA, I/S, 3 полоса, 125 A 37 18636 NG125N 3 полоса, кривая С, 40 A 16 18777 NG125L 1 полос, кривая В, 60 A 18 19047 Vigi NG125, A 37, 300-3000 мA, I/S, 3 полоса, 125 A 37 18638 NG125N 3 полоса, кривая С, 40 A 16 18777 NG125L 1 полос, кривая С, 10 A 18 19058 Vigi NG125, A 37, 300-3000 мA, I/S, 3 полоса, 63 A, 400/500 B 37 18638 NG125N 3 полоса, кривая С, 60 A 18 19058 Vigi NG125, A 37, 300-3000 мA, I/S, 4 полоса, 63 A, 400/500 B 37 18639 NG125N 3 полоса, кривая С, 60 A 18 19058 Vigi NG125, A 37, 300-3000 мA, I/S, 4 полоса, 63 A, 400/500 B 37 18634 NG125N 3 полоса, кривая С, 60 A 18 19058 Vigi NG125, A 37, 300-3000 мA, I/S, 4 полоса, 63 A, 400/500 B 37 18634 NG125N 3 полоса, кривая С, 10 A 18 19058 Vigi NG125, A 37, 300-3000 мA, I/S, 8 полоса, 125 A, 400/500 B 37 18634 NG125N 3 полоса, кривая С, 10 A 18 19058 Vigi NG125, A 37, 300-3000 мA, I/S, 8 полоса, 125 A, 400/500 B 37 18634 NG125N 3 полоса, кривая С, 10 A 18 19058 NG125N 3 полоса, кривая С, 10 A				18 19034 Vigi NG125, А 57, 300 S мА, 4 полюса, 63 А
18622 NG125N 1 3 полоса, кривая С, 10 A 16 1877 NG125L 4 полоса, кривая В, 25 A 18 19041 Vigi NG125, A Ж, 30 м.4, 4 полоса, 125 A 37 18633 NG125N 3 полоса, кривая С, 16 A 1877 NG125L 4 полоса, кривая В, 92 A 18 19042 Vigi NG125, A Ж, 30 0 м.4, 4 полоса, 125 A 37 18633 NG125N 3 полоса, кривая С, 20 A 18 19044 Vigi NG125, A Ж, 300-1000 м.4, I/S, 3 полоса, 125 A 37 18636 NG125N 3 полоса, кривая С, 20 A 18 19044 Vigi NG125, A Ж, 300-1000 м.4, I/S, 3 полоса, 125 A 37 18636 NG125N 3 полоса, кривая С, 25 A 38 18 19046 Vigi NG125, A Ж, 300-3000 м.4, I/S, 3 полоса, 125 A 37 18636 NG125N 3 полоса, кривая С, 25 A 38 18 19047 Vigi NG125, A Ж, 300-3000 м.4, I/S, 3 полоса, 125 A 37 18636 NG125N 3 полоса, кривая С, 32 A 38 18 19047 Vigi NG125, A Ж, 300-3000 м.4, I/S, 3 полоса, 125 A 37 18637 NG125N 3 полоса, кривая С, 30 A 38 NG125N 3 полоса, кривая С, 40 A 38 NG125N 3 полоса, кривая С, 40 A 39 NG125N 3 полоса, кривая С, 40 A 40 NG125N 3 полоса, кривая С, 40 A 41 NG125N 3 полоса, кривая С, 400 A 41 NG125N 3 полоса + нейтраль, кривая С, 40 A 4 NG125N 3 полоса + нейтраль, кривая С, 40 A 4 NG125N 3 полоса + нейтраль, кривая С, 40 A 4 NG125N 3 полоса + нейтраль, кривая С, 40 A 4 NG125N 3 NG125N 4 полоса, кривая С, 40 A 4 NG125N 3 NG125N 4 полоса + нейтраль кривая С, 400 A 4 NG125N 3 NG125N 4 полоса + нейтрал	18626 NG125N 2 полюса, кривая C, 40 A	16	18768 NG125L 4 полюса, кривая В, 10 А	19036 Vigi NG125, A дл., 1000 [2] МА, 4 ПОЛЮСА, ВЗ А 3 19036 Vigi NG125, A дл., 300-3000 мА, I/S/R, 3 полюса, 63 А 3
18622 NG125N 1 3 полоса, кривая С, 10 A 16 1877 NG125L 4 полоса, кривая В, 25 A 18 19041 Vigi NG125, A Ж, 30 м.4, 4 полоса, 125 A 36 18632 NG125N 3 полоса, кривая С, 10 A 16 1877 NG125L 4 полоса, кривая В, 92 A 18 19042 Vigi NG125, A Ж, 30 0 м.4, 4 полоса, 125 A 37 18633 NG125N 3 полоса, кривая С, 20 A 18 19044 Vigi NG125, A Ж, 300-1000 м.4, I/S, 3 полоса, 125 A 37 18636 NG125N 3 полоса, кривая С, 20 A 18 19045 Vigi NG125, A Ж, 300-1000 м.4, I/S, 3 полоса, 125 A 37 18636 NG125N 3 полоса, кривая С, 25 A 18 19045 Vigi NG125, A Ж, 300-3000 м.4, I/S, 3 полоса, 125 A 37 18636 NG125N 3 полоса, кривая С, 25 A 38 18 19045 Vigi NG125, A Ж, 300-3000 м.4, I/S, 3 полоса, 125 A 37 18636 NG125N 3 полоса, кривая С, 32 A 38 18 19045 Vigi NG125, A Ж, 300-3000 м.4, I/S, 3 полоса, 125 A 37 18637 NG125L 4 полоса, кривая В, 80 A 38 NG125N 3 полоса, кривая С, 40 A 39 NG125N 3 полоса, кривая С, 40 A 40 18 19049 Vigi NG125, A Ж, 300-3000 м.4, I/S, 3 полоса, 63 A, 400/500 B 37 NG125N 3 полоса, кривая С, 60 A 40 NG125N 3 полоса, кривая С, 80 A 40 NG125N 3 полоса, кривая С, 10 A 40 NG125N 3 полоса, кривая С, 1				18 19037 Vigi NG125, A м, 300-3000 мА, VS/R, 4 полюса, 63 А 3 18 19039 Vigi NG125 A м 30 мА 3 полюса, 125 А 2
18634 NG125N 3 полюса, кривая С, 10A 16 1877 NG125L 4 полюса, кривая В, 90 A 18 19044 Vigi NG125, A ж, 300-1000 мA, I/S, 3 полюса, 125 A 37 18635 NG125N 3 полюса, кривая С, 20A 16 1877 NG125L 4 полюса, кривая В, 90 A 18 19046 Vigi NG125, A ж, 300-1000 мA, I/S, R, 3 полюса, 125 A 37 18636 NG125N 3 полюса, кривая С, 32A 18 1877 NG125L 4 полюса, кривая В, 80 A 18 19047 Vigi NG125, A ж, 300-3000 мA, I/S,R, 3 полюса, 125 A 37 18637 NG125N 3 полюса, кривая С, 40A 18 19049 Vigi NG125, A ж, 300-3000 мA, I/S,R, 4 полюса, 125 A 37 18638 NG125N 3 полюса, кривая С, 40A 18 19053 Vigi NG125, A ж, 300-3000 мA, I/S,R, 4 полюса, 63 A, 400/500 B 37 18639 NG125N 3 полюса, кривая С, 50A 18 18639 NG125N 3 полюса, кривая С, 50A 18 18640 NG125N 3 полюса, кривая С, 80A 18 19053 Vigi NG125, A ж, 300-3000 мA, I/S,R, 4 полюса, 63 A, 400/500 B 37 18639 NG125N 3 полюса, кривая С, 63A 38 NG125N 3 полюса, кривая С, 80A 38 NG125N 3 полюса, кривая С, 10A 4 полюса, 125 A, 400/500 B 4 полюса, 125	18629 NG125N 2 полюса, кривая C, 80 A	16	18771 NG125L 4 полюса, кривая B, 25 A	18 19041 Vigi NG125, А м, 30 мА, 4 полюса, 125 А 3
18634 NG125N 3 полюса, кривая С, 20 A 16 1877 NG125L 4 полюса, кривая В, 50 A 18 19046 Vigi NG125, A £3, 300-1000 мA, J/S, 4 полюса, 125 A 37 18635 NG125N 3 полюса, кривая С, 25 A 16 18776 NG125L 4 полюса, кривая В, 80 A 18 19047 Vigi NG125, A £3, 300-3000 мA, J/S, 8, 4 полюса, 125 A 37 18636 NG125N 3 полюса, кривая С, 32 A 16 18776 NG125L 1 полюс, кривая В, 80 A 18 19049 Vigi NG125, A £3, 300-3000 мA, J/S, 8, 4 полюса, 125 A 37 18637 NG125N 3 полюса, кривая С, 40 A 16 18777 NG125L 1 полюс, кривая С, 10 A 18 19049 Vigi NG125, A £3, 300-3000 мA, J/S, 8, 4 полюса, 125 A 37 18639 NG125N 3 полюса, кривая С, 50 A 16 18778 NG125L 1 полюс, кривая С, 60 A 18 19053 Vigi NG125, A £3, 300-3000 мA, J/S, 8, 4 полюса, 63 A, 400/500 B 37 18639 NG125N 3 полюса, кривая С, 63 A 16 18778 NG125L 1 полюс, кривая С, 20 A 18 19055 Vigi NG125, A £3, 300-3000 мA, J/S, R, 4 полюса, крива А, 400/500 B 37 18640 NG125N 3 полюса, кривая С, 100 A 16 1878 </td <td></td> <td></td> <td></td> <td>18 19042 Vigi NG125, A да, 300 мА, 4 полюса, 125 А 3 18 19044 Vigi NG125 A за 300-1000 мА I/S 3 полюса 125 Δ 3</td>				18 19042 Vigi NG125, A да, 300 мА, 4 полюса, 125 А 3 18 19044 Vigi NG125 A за 300-1000 мА I/S 3 полюса 125 Δ 3
18636 NG125N 3 полюса, кривая С, 32 A 16 1877 NG125L 4 полюса, кривая В, 80 A 18 19049 Vigi NG125, A £7, 300-3000 мA, I/S/R, 4 полюса, 25A 37 18637 NG125N 3 полюса, кривая С, 50 A 16 1877 NG125L 1 полюс, кривая С, 16 A 18 19053 Vigi NG125, A £7, 300-3000 мA, I/S/R, 3 полюса, 63 A, 400/500 B 37 18638 NG125N 3 полюса, кривая С, 63 A 16 1877 NG125L 1 полюс, кривая С, 20 A 18 19054 Vigi NG125, A £7, 300-3000 мA, I/S/R, 4 полюса, 63 A, 400/500 B 37 18649 NG125N 3 полюса, кривая С, 80 A 16 1878 NG125L 1 полюс, кривая С, 25 A 18 3 полюса, кривая С, 400/500 B 37 18649 NG125N 3 полюса, кривая С, 100 A 16 18782 NG125L 1 полюс, кривая С, 25 A 18 3 полюса, кривая С, 125 A, 400/500 B 33 18644 NG125N 3 полюса, кривая С, 15 A 16 18782 NG125L 1 полюс, кривая С, 40 A 18 19056 Vigi NG125, A £7, 300-3000 MA, I/S/R, 4 полюса, крива А, 400/500 B 33 18645 NG125N 3 полюса, кривая С, 15 A 16 18782 NG125L 1 полюс, кривая С, 40 A 18 19056 Vigi NG125, A £7, 300-3000 MA, I/S/R, 4 полюса, крива А, 4	18634 NG125N 3 полюса, кривая C, 20 A	16	18774 NG125L 4 полюса, кривая B, 50 A	18 19046 Vigi NG125, А 📆, 300-1000 мА, I/S, 4 полюса, 125 А 3
18637 NG125N 3 полноса, кривая С, 40A 16 18777 NG125L 1 полнос, кривая С, 10A 18 19053 Vigi NG125, A X1, 300-3000 мA, I/S/R, 3 полноса, 63 A, 400/500 B 37 18638 NG125N 3 полноса, кривая С, 63A 16 18778 NG125L 1 полнос, кривая С, 20A 18 19054 Vigi NG125, A X1, 300-3000 мA, I/S/R, 4 полноса, 63 A, 400/500 B 37 18640 NG125N 3 полноса, кривая С, 80A 16 18779 NG125L 1 полнос, кривая С, 25 A 18 19055 Vigi NG125, A X1, 300-3000 мA, I/S/R, 4 полноса, 63 A, 400/500 B 37 18640 NG125N 3 полноса, кривая С, 80A 16 18780 NG125L 1 полнос, кривая С, 25 A 18 19055 Vigi NG125, A X1, 300-3000 мA, I/S/R, 4 полноса, 63 A, 400/500 B 37 18642 NG125N 3 полноса, кривая С, 10A 16 18781 NG125L 1 полнос, кривая С, 25 A 18 19055 Vigi NG125, A X1, 300-3000 мA, I/S/R, 4 полноса, крива С, 25 A 38 18644 NG125N 3 полноса, кривая С, 125 A 16 18782 NG125L 1 полнос, кривая С, 40A 18 19056 Vigi NG125, A X1, 300-3000 мA, I/S/R, 3 полноса, 42 A 4 полноса, крива С, 40A 4 полноса, крива С, 40A 4 полноса, крива С, 40A </td <td>18636 NG125N 3 полюса, кривая C, 32 A</td> <td>16</td> <td>18776 NG125L 4 полюса, кривая B, 80 A</td> <td>18 19049 Vigi NG125, A 📆, 300-3000 мА, I/S/R, 4 полюса, 125 А 3</td>	18636 NG125N 3 полюса, кривая C, 32 A	16	18776 NG125L 4 полюса, кривая B, 80 A	18 19049 Vigi NG125, A 📆, 300-3000 мА, I/S/R, 4 полюса, 125 А 3
18639 NG125N 3 полюса, кривая С, 63 A 16 1879 NG125L 1 полюс, кривая С, 20 A 18 19055 Vigi NG125, A £3, 300-3000 мA, I/S/R, 3 полюса, кривая С, 80 A 3 полюса, кривая С, 80 A 18 4 полюса, кривая С, 80 A 18 19056 Vigi NG125, A £3, 300-3000 мA, I/S/R, 100 A 18 19056 Vigi NG125, A £3, 300-3000 мA, I/S/R, 100 A 18 18 4 полюса, 125 A, 400/500 B 33 18644 NG125N 3 полюса, кривая С, 125 A 16 18782 NG125L 1 полюс, кривая С, 40 A 18 4 полюса, 125 A, 400/500 B 33 18646 NG125N 3 полюса + нейтраль, кривая С, 80 A 16 18783 NG125L 1 полюс, кривая С, 50 A 18 19058 Vigi NG125, A £3, 300-3000 мA, I/S/R, 400/500 B 33	18637 NG125N 3 полюса, кривая C, 40 A	16	18777 NG125L 1 полюс, кривая C, 10 A	18 19053 Vigi NG125, A 📶, 300-3000 мА, I/S/R, 3 полюса, 63 А, 400/500 В 3
18640 NG125N 3 полноса, кривая С, 80 A 16 18780 NG125L 1 полнос, кривая С, 25 A 18 3 полноса, 125 A, 400/500 B 33 18642 NG125N 3 полноса, кривая С, 100 A 16 18781 NG125L 1 полнос, кривая С, 24 A 18 19056 Vigi NG125, A, 63, 300-3000 мA, I/S/R, 18644 NG125N 3 полноса, кривая С, 125 A 16 18782 NG125L 1 полнос, кривая С, 40 A 18 4 полноса, 125 A, 400/500 B 33 18646 NG125N 3 полноса + нейтраль, кривая С, 80 A 16 18782 NG125L 1 полнос, кривая С, 50 A 18 19058 SDV, контакт сигнализации повреждения,	18639 NG125N 3 полюса, кривая C, 63 A	16	18779 NG125L 1 полюс, кривая C, 20 A	18 19055 Vigi NG125, A 🙉 , 300-3000 MA, I/S/R,
18644 NG125N 3 полюса, кривая С, 125 A 16 1872 NG125L 1 полюс, кривая С, 40 A 18 4 полюса, 125 A, 400/500 B 33 18646 NG125N 3 полюса + нейтраль, кривая С, 80 A 16 1878 NG125L 1 полюс, кривая С, 50 A 18 19058 SDV, контакт сигнализации повреждения,				18 3 полюса, 125 A, 400/500 B 3
18646 NG125N 3 полюса + нейтраль, кривая С, 80 A 16 18783 NG125L 1 полюс, кривая С, 50 A 18 19058 SDV, контакт сигнализации повреждения,	18644 NG125N 3 полюса, кривая C, 125 A	16	18782 NG125L 1 полюс, кривая C, 40 A	18 4 полюса, 125 A, 400/500 B 3
				10000 OD 1; Komaki om namoaqiii nobpoxiqoriin;
	. , , , , , , , , , , , , , , , , , , ,	-		, _50 0 110pr 10ma (0)2.1y

Nº no	о каталогу ст	rp.	Nº no) каталогу	стр.	№ по каталогу	стр.
19059	SDV, контакт сигнализации повреждения, H3, 250 В пер. тока (0,1 - 2 A)	38		C32H-DC, 2 полюса, кривая U, 16 A C32H-DC, 2 полюса, кривая U, 20 A	19 19	23402 ID, 4 полюса, ном. ток 63 A, 300 S мА, класс А 23403 ID, 4 полюса, ном. ток 63 A, 500 S мА, класс А	33
	MXV, независимый расцепитель, 110-415 В пер. тока	39	20548	C32H-DC, 2 полюса, кривая U, 25 A	19	23523-23530 ІD, диф. выключатель нагрузки	33 33 10
	MN $\overline{\mathbb{X}}$, расцепитель минимального напряжения, нечувствительный к отключению питания, 220-240-В пер. тока	39		C32H-DC, 2 полюса, кривая U, 32 A C32H-DC, 2 полюса, кривая U, 40 A	19 19	23555 С60а, 1 полюс, кривая В, 6 А 23556 С60а, 1 полюс, кривая В, 10 А	10
19062	MN	39	21000	1		23557 С60а, 1 полюс, кривая В, 16 А 23559 С60а, 1 полюс, кривая В, 20 А	10 10
19063	МX+ОF, независимый расцепитель и блок-контакт, 12 В пер. тока, 12 В пост. тока	38		Автомат защиты PM 25, 0,1-0,16 A	24	23560 С60а, 1 полюс, кривая В, 25 А 23561 С60а, 1 полюс, кривая В, 32 А	10 10
19064	МХ+ОF, независимый расцепитель и блок-контакт,			Автомат защиты PM 25, 0,16-0,25 A Автомат защиты PM 25, 0,25-0,4 A	24 24	23562 С60а, 1 полюс, кривая В, 40 А	10
19065	230-415 В пер. тока, 110-130 В пост. тока МХ+ОF, независимый расцепитель и блок-контакт,	38		Автомат защиты РМ 25, 0,40-0,63 A Автомат защиты РМ 25, 0,63-1 A	24 24	23571 С60а, 2 полюса, кривая В, 6 А 23572 С60а, 2 полюса, кривая В, 10 А	10 10
	48-130 В пер. тока, 48 В пост. тока МХ+ОF, независимый расцепитель и блок-контакт,	38	21105	Автомат защиты РМ 25, 1-1,6 A Автомат защиты РМ 25, 1,6-2,5 A	24 24	23573 С60а, 2 полюса, кривая В, 16 А 23574 С60а, 2 полюса, кривая В, 20 А	10 10
	24 В пер. тока, 24 В пост. тока	38	21107	Автомат защиты РМ 25, 2,5-4 А	24	23575 С60а, 2 полюса, кривая В, 25 А	10 10
	MN, расцепитель минимального напряжения мгновенного действия, 220-240 В пер. тока	38		Автомат защиты РМ 25, 4-6,3 А Автомат защиты РМ 25, 6-10 А	24 24	23577 С60а, 2 полюса, кривая В, 32 А 23578 С60а, 2 полюса, кривая В, 40 А	10
19068	MNL S, расцепитель минимального напряжения с выдержкой времени, 230-240 В пер. тока	39	21110	Автомат защиты РМ 25, 9-14 A Автомат защиты РМ 25, 13-18 A	24 24	23586 С60а, 3 полюса, кривая В, 6 А 23587 С60а, 3 полюса, кривая В, 10 А	10 10
19069	MN, расцепитель минимального напряжения	38	21112	Автомат защиты PM 25, 17-23 A	24	23589 С60а, 3 полюса, кривая В, 16 A 23590 С60а, 3 полюса, кривая В, 20 A	10 10
19070	мгновенного действия, 48 В пер. тока MN, расцепитель минимального напряжения			Автомат защиты PM 25, 20-25 A Токоограничитель 100 кA, 415 к PM 25	24 24	23591 С60а, 3 полюса, кривая В, 25 А	10
19071	мгновенного действия, 48 В пост. тока ОF+OF, блок-контакт состояния, 220-240 В пер. тока (6 A)	38 38		F+F, блок-контакт О+F, блок-контакт	24 24	23592 С60а, 3 полюса, кривая В, 32 А 23593 С60а, 3 полюса, кривая В, 40 А	10 10
19072	OF+SD, блок-контакт сигнализации повреждения, 220-240 В пер. тока (6 A)	38	21118	F+SD.F, блок-контакт	24 24	23602 С60а, 4 полюса, кривая В, 6 А 23603 С60а, 4 полюса, кривая В, 10 А	10 10
	DPN N, 1 полюс + нейтраль, кривая B, 6 A	20	21120	O+SD.F, блок-контакт F+SD.O, блок-контакт	24	23604 С60а, 4 полюса, кривая В, 16 А	10
	DPN N, 1 полюс + нейтраль, кривая В, 10 А DPN N, 1 полюс + нейтраль, кривая В, 13 А	20 20		O+SD.O, блок-контакт МХ, независимый расцепитель, 220/240 В	24 24	23605 С60а, 4 полюса, кривая В, 20 А 23606 С60а, 4 полюса, кривая В, 25 А	10 10
	DPN N, 1 полюс + нейтраль, кривая B, 16 A DPN N, 1 полюс + нейтраль, кривая B, 20 A	20 20	21128	МХ, независимый расцепитель, 380/415 В МN, расцепитель минимального напряжения, 220/240 В	24 24	23607 С60а, 4 полюса, кривая В, 32 А 23608 С60а, 4 полюса, кривая В, 40 А	10 10
19256	DPN N, 1 полюс + нейтраль, кривая В, 25 A DPN N, 1 полюс + нейтраль, кривая В, 32 A	20 20	21130	MN, расцепитель минимального напряжения, 380/415 B	24	23794 С60а, 1 полюс, кривая С, 2 А 23796 С60а, 1 полюс, кривая С, 4 А	10 10
19258	DPN N, 1 полюс + нейтраль, кривая B, 40 A	20	21180	Шинка гребенчатая к РМ 25 R,RCI - реле контроля тока	24 75	23807 С60а, 2 полюса, кривая С, 2 А	10
	DPN N, 1 полюс + нейтраль, кривая C, 6 A DPN N, 1 полюс + нейтраль, кривая C, 10 A	20 20		RCP - реле контроля фаз RCU - реле контроля напряжения	75 75	23809 С60а, 2 полюса, кривая С, 4 А 23820 С60а, 3 полюса, кривая С, 2 А	10 10
	DPN N, 1 полюс + нейтраль, кривая C, 13 A DPN N, 1 полюс + нейтраль, кривая C, 16 A	20 20		RCC, реле для кондиционера, 1 полюс	75	23822 С60а, 3 полюса, кривая С, 4 А 23833 С60а, 4 полюса, кривая С, 2 А	10 10
19269	DPN N, 1 полюс + нейтраль, кривая C, 20 A	20	23000			23835 Сб0а, 4 полюса, кривая С, 4 А 23849 Сб0а, 1 полюс, кривая С, 6 А	10 10
19271	DPN N, 1 полюс + нейтраль, кривая C, 25 A DPN N, 1 полюс + нейтраль, кривая C, 32 A	20 20		ID, 2 полюса, ном. ток 25 A, 10 мA ID, 2 полюса, ном. ток 25 A, 30 мA	33 33	23850 С60а, 1 полюс, кривая С, 10 А	10
	DPN N, 1 полюс + нейтраль, кривая C, 40 A DPN N Vigi, 30 мА мгн. действия,	20	23011	ID, 2 полюса, ном. ток 25 A, 300 мA	33	23851 С60а, 1 полюс, кривая С, 16 А 23852 С60а, 1 полюс, кривая С, 20 А	10 10
	1 полюс + нейтраль, кривая В, 6 A DPN N Vigi, 30 мА мгн. действия,	32	23014	ID, 2 полюса, ном. ток 25 A, 500 мА ID, 2 полюса, ном. ток 40 A, 30 мА	33 33	23853 С60а, 1 полюс, кривая С, 25 А 23854 С60а, 1 полюс, кривая С, 32 А	10 10
	1 полюс + нейтраль, кривая В, 10 А	32		ID, 2 полюса, ном. ток 40 A, 100 мA ID, 2 полюса, ном. ток 40 A, 300 мA	33 33	23855 С60а, 1 полюс, кривая С, 40 А	10
19655	DPN N Vigi, 30 мА мгн. действия, 1 полюс + нейтраль, кривая В, 16 А	32	23017	ID, 2 полюса, ном. ток 40 A, 500 мА ID, 2 полюса, ном. ток 60 A, 30 мА	33 33 33	23863 С60а, 2 полюса, кривая С, 6 А 23864 С60а, 2 полюса, кривая С, 10 А	10 10
19656	DPN N Vigi, 30 мА мгн. действия, 1 полюс + нейтраль, кривая В, 20 А	32	23021	ID, 2 полюса, ном. ток 60 A, 300 мA	33	23865 C60a, 2 полюса, кривая C, 16 A 23866 C60a, 2 полюса, кривая C, 20 A	10 10
19657	DPN N Vigi, 30 мA мгн. действия, 1 полюс + нейтраль, кривая В, 25 А	32		ID, 2 полюса, ном. ток 63 A, 500 мA ID, 2 полюса, ном. ток 80 A, 500 мA	33 33	23867 С60а, 2 полюса, кривая С, 25 A 23868 С60а, 2 полюса, кривая С, 32 A	10 10
19658	DPN N Vigi, 30 мА мгн. действия,			ID, 2 полюса, ном. ток 63 A, 300 S мА ID, 2 полюса, ном. ток 63 A, 500 S мА	33 33	23869 С60а, 2 полюса, кривая С, 40 А	10
19659	1 полюс + нейтраль, кривая В, 32 A DPN N Vigi, 30 мА мгн. действия,	32	23030	ID, 2 полюса, ном. ток 80 A, 300 мА ID, 2 полюса, ном. ток 80 A, 300 S мА	33	23877 С60а, 3 полюса, кривая С, 6 А 23878 С60а, 3 полюса, кривая С, 10 А	10 10
19661	1 полюс + нейтраль, кривая В, 40 A DPN N Vigi, 30 мА мгн. действия,	32	23033	ID, 2 полюса, ном. ток 80 A, 500 S мА	33 33	23880 С60а, 3 полюса, кривая С, 16 А 23881 С60а, 3 полюса, кривая С, 20 А	10 10
	1 полюс + нейтраль, кривая С, 6 A DPN N Viqi, 30 мА мгн. действия,	32	23035	ID, 2 полюса, ном. ток 100 A, 300 мА ID, 2 полюса, ном. ток 100 A, 300 S мА	33 33 33	23882 С60а, 3 полюса, кривая С, 25 A 23885 С60а, 3 полюса, кривая С, 32 A	10 10
	1 полюс + нейтраль, кривая С, 10 А	32		ID, 4 полюса, ном. ток 25 A, 30 мA ID, 4 полюса, ном. ток 25 A, 300 мA	33 33	23886 С60а, 3 полюса, кривая С, 40 А	10
19665	DPN N Vigi, 30 мА мгн. действия, 1 полюс + нейтраль, кривая С, 16 А	32	23041	ID, 4 полюса, ном. ток 25 A, 500 мА ID, 4 полюса, ном. ток 40 A, 30 мА	33 33	23900 С60а, 4 полюса, кривая С, 6 А 23901 С60а, 4 полюса, кривая С, 10 А	10 10
19666	DPN N Vigi, 30 мА мгн. действия, 1 полюс + нейтраль, кривая С, 20 А	32	23045	ID, 4 полюса, ном. ток 40 A, 300 мA	33	23902 С60а, 4 полюса, кривая С, 16 А 23903 С60а, 4 полюса, кривая С, 20 А	10 10
19667	DPN N Vigi, 30 мА мгн. действия,	32	23047	ID, 4 полюса, ном. ток 40 A, 500 мA ID, 4 полюса, ном. ток 63 A, 30 мA	33 33	23904 С60а, 4 полюса, кривая С, 25 A 23905 С60а, 4 полюса, кривая С, 32 A	10 10
19668	1 полюс + нейтраль, кривая С, 25 A DPN N Vigi, 30 мА мгн. действия,			ID, 4 полюса, ном. ток 63 A, 300 мA ID, 4 полюса, ном. ток 63 A, 500 мA	33 33	23906 C60a, 4 полюса, кривая C, 32 A 23906 C60a, 4 полюса, кривая C, 40 A	10
19669	1 полюс + нейтраль, кривая С, 32 A DPN N Vigi, 30 мА мгн. действия,	32	23054	ID, 4 полюса, ном. ток 80 A, 300 мA ID, 4 полюса, ном. ток 100 A, 300 мA	33 33	24000	
19771	1 полюс + нейтраль, кривая С, 40 A DPN N Viqi, 30 мА мгн. действия, кривая В, 6 A	32 32	23059	ID, 4 полюса, ном. ток 100 A, 300 S мА	33	24045 C60N, 1 полюс, кривая В, 1 А 24046 C60N, 1 полюс, кривая В, 2 А	11 11
19772	DPN N Vigi, 30 мА мгн. действия, кривая В, 10 А	32 32		ID, 4 полюса, ном. ток 40 A, 300 мA ID, 4 полюса, ном. ток 40 A, 500 мA	33 33	24047 C60N, 1 полюс, кривая В, 3 А	11
19774	DPN N Vigi, 30 мА мгн. действия, кривая В, 13 А DPN N Vigi, 30 мА мгн. действия, кривая В, 16 А	32		ID, 4 полюса, ном. ток 63 A, 300 S мА ID, 2 полюса, ном. ток 63 A, 500 S мА	33 33	24048 C60N, 1 полюс, кривая В, 4 А 24049 C60N, 1 полюс, кривая В, 6 А	11 11
19676	DPN N Vigi, 30 мА мгн. действия, кривая В, 20 А DPN N Vigi, 30 мА мгн. действия, кривая В, 25 А	32 32	23069	ID, 4 полюса, ном. ток 80 A, 300 S мА ID, 4 полюса, ном. ток 80 A, 500 S мА ID, 4 полюса, ном. ток 80 A, 500 S мА	33 33	24050 С60N, 1 полюс, кривая В, 10 A 24051 С60N, 1 полюс, кривая В, 16 A	11 11
19677	DPN N Vigi, 30 мА мгн. действия, кривая В, 32 А DPN N Vigi, 30 мА мгн. действия, кривая В, 40 А	32 32	23272	ID, 2 полюса, ном. ток 80 A, 300 S мA, класс A	33	24052 C60N, 1 полюс, кривая B, 20 A	11
19781	DPN N Vigi, 300 мА мгн. действия, кривая C, 6 A	32		ID, 2 полюса, ном. ток 100 A, 300 S мA, класс A ID, 4 полюса, ном. ток 80 A, 300 S мA, класс A	33 33	24053 С60N, 1 полюс, кривая В, 25 А 24054 С60N, 1 полюс, кривая В, 32 А	11 11
19782 19783	DPN N Vigi, 300 мА мгн. действия, кривая С, 10 A DPN N Vigi, 300 мА мгн. действия, кривая С, 13 A	32 32	23334	ID, 4 полюса, ном. ток 100 A, 300 S мA, класс A ID, 2 полюса, ном. ток 25 A, 10 мA, класс A	33 33	24055 C60N, 1 полюс, кривая В, 40 A 24056 C60N, 1 полюс, кривая В, 50 A	11 11
	DPN N Vigi, 300 мА мгн. действия, кривая C, 16 A DPN N Vigi, 300 мА мгн. действия, кривая C, 20 A	32 32	23354	D, 2 полюса, ном. ток 25 A, 30 мA, класс A	33	24057 С60N, 1 полюс, кривая В, 63 А 24067 С60N, 1 полюс, кривая С, 0,5 А	11 11
19786	DPN N Vigi, 300 мА мгн. действия, кривая C, 25 A	32 32		ID, 2 полюса, ном. ток 25 A, 300 мA, класс A ID, 2 полюса, ном. ток 40 A, 30 мA, класс A	33 33	24068 C60N, 2 полюса, кривая C, 0,5 A	11
	DPN N Vigi, 300 мА мгн. действия, кривая C, 32 A DPN N Vigi, 300 мА мгн. действия, кривая C, 40 A	32		ID, 2 полюса, ном. ток 40 A, 300 мA, класс A ID, 2 полюса, ном. ток 63 A, 30 мA, класс A	33 33	24069 C60N, 3 полюса, кривая C, 0,5 A 24070 C60N, 4 полюса, кривая C, 0,5 A	11 11
20000			23363	ID, диф. выключатель нагрузки	33	24071 С60N, 2 полюса, кривая В, 1 А 24072 С60N, 2 полюса, кривая В, 2 А	11 11
	С32H-DC, 1 полюс, кривая U, 1 A	19	23370	ID, 2 полюса, ном. ток 63 A, 300 мА, класс A ID, 2 полюса, ном. ток 63 A, 300 S мА, класс A	33 33	24073 C60N, 2 полюса, кривая B, 3 A	11
20533	C32H-DC, 1 полюс, кривая U, 2 A C32H-DC, 1 полюс, кривая U, 3 A	19 19		ID, 4 полюса, ном. ток 25 A, 30 мA, класс A ID, 4 полюса, ном. ток 25 A, 300 мA, класс A	33 33	24074 С60N, 2 полюса, кривая В, 4 А 24075 С60N, 2 полюса, кривая В, 6 А	11 11
	C32H-DC, 1 полюс, кривая U, 6 A C32H-DC, 1 полюс, кривая U, 10 A	19 19	23381	ID, 4 полюса, ном. ток 25 A, 500 мA, класс A ID, 4 полюса, ном. ток 40 A, 30 мA, класс A	33 33 33	24076 C60N, 2 полюса, кривая В, 10 А 24077 C60N, 2 полюса, кривая В, 16 А	11 11
20536	С32H-DC, 1 полюс, кривая U, 16 A С32H-DC, 1 полюс, кривая U, 20 A	19 19	23384	ID, 4 полюса, ном. ток 40 A, 300 мA, класс A	33 33	24078 С60N, 2 полюса, кривая В, 20 A 24079 С60N, 2 полюса, кривая В, 25 A	11 11
20538	C32H-DC, 1 полюс, кривая U, 25 A	19	23386	ID, 4 полюса, ном. ток 40 A, 500 мA, класс A ID, 4 полюса, ном. ток 63 A, 30 мA, класс A	33	24080 C60N, 2 полюса, кривая B, 32 A	11
20540	C32H-DC, 1 полюс, кривая U, 32 A C32H-DC, 1 полюс, кривая U, 40 A	19 19		ID, 4 полюса, ном. ток 63 A, 300 мA, класс A ID, 4 полюса, ном. ток 63 A, 500 мA, класс A	33 33	24081 С60N, 2 полюса, кривая В, 40 A 24082 С60N, 2 полюса, кривая В, 50 A	11 11
20541	C32H-DC, 2 полюса, кривая U, 1 A C32H-DC, 2 полюса, кривая U, 2 A	19 19	23390	ID, диф. выключатель нагрузки	33 33	24083 С60N, 2 полюса, кривая В, 63 А 24084 С60N, 3 полюса, кривая В, 1 А	11 11
20543	С32H-DC, 2 полюса, кривая U, 3 A	19	23394	ID, диф. выключатель нагрузки ID, диф. выключатель нагрузки	33	24085 С60N, 3 полюса, кривая В, 2 А 24086 С60N, 3 полюса, кривая В, 3 А	11 11
	С32H-DC, 2 полюса, кривая U, 6 A С32H-DC, 2 полюса, кривая U, 10 A	19 19		ID, 4 полюса, ном. ток 40 A, 300 S мА, класс A ID, 4 полюса, ном. ток 40 A, 500 S мА, класс A	33 33	24086 С60N, 3 полюса, кривая В, 3 А 24087 С60N, 3 полюса, кривая В, 4 А	11
				•			

№ по каталогу стр.	№ по каталогу	стр. № по каталогу ст).
24088 C60N, 3 полюса, кривая В, 6 А 11	24595 C60N, 3 полюса, кривая D, 1 A	11 25000	
24089 C60N, 3 полюса, кривая В, 10 А 11 24090 C60N, 3 полюса, кривая В, 16 А 11	24596 C60N, 3 полюса, кривая D, 2 A 24597 C60N, 3 полюса, кривая D, 3 A		12
24091 C60N, 3 полюса, кривая В, 20 A 11 24092 C60N, 3 полюса, кривая В, 25 A 11	24598 C60N, 3 полюса, кривая D, 4 A 24599 C60N, 3 полюса, кривая D, 6 A	25002 C60H, 3 полюса, кривая C, 25 A	12 12
24093 C60N, 3 полюса, кривая B, 32 A 11	24601 C60N, 3 полюса, кривая D, 10 A	11 25003 СБОН, 3 полюса, кривая С, 32 A	12 12
24094 С60N, 3 полюса, кривая В, 40 А 11 24095 С60N, 3 полюса, кривая В, 50 А 11	24602 С60N, 3 полюса, кривая D, 16 A 24603 С60N, 3 полюса, кривая D, 20 A	25005 С60H, 3 полюса, кривая С, 50 A	12 12
24096 C60N, 3 полюса, кривая В, 63 А 11 24097 C60N, 4 полюса, кривая В, 1 А 11	24604 С60N, 3 полюса, кривая D, 25 A 24605 С60N, 3 полюса, кривая D, 32 A	25007 C60H, 4 полюса, кривая C, 1 A	12
24098 С60N, 4 полюса, кривая В, 2 А 11 24099 С60N, 4 полюса, кривая В, 3 А 11	24606 C60N, 3 полюса, кривая D, 40 A 24608 C60N, 3 полюса, кривая D, 50 A	25009 С60Н, 4 полюса, кривая С, 3 А	12 12
24100 C60N, 4 полюса, кривая B, 4A 11	24609 C60N, 3 полюса, кривая D, 63 A	11 25010 С60H, 4 полюса, кривая С, 4 A	12 12
24101 С60N, 4 полюса, кривая В, 6 А 11 24102 С60N, 4 полюса, кривая В, 10 А 11	24610 С60N, 4 полюса, кривая D, 1 A 24611 С60N, 4 полюса, кривая D, 2 A	25012 С60H, 4 полюса, кривая С, 10 A	12 12
24103 С60N, 4 полюса, кривая В, 16 А 11 24104 С60N, 4 полюса, кривая В, 20 А 11	24612 С60N, 4 полюса, кривая D, 3 A 24613 С60N, 4 полюса, кривая D, 4 A	25014 C60H, 4 полюса, кривая C, 20 A	12
24105 C60N, 4 полюса, кривая В, 25 А 11 24106 C60N, 4 полюса, кривая В, 32 А 11	24614 С60N, 4 полюса, кривая D, 6 A 24616 С60N, 4 полюса, кривая D, 10 A	11 25016 C60H, 4 полюса, кривая C, 32 A	12 12
24107 С60N, 4 полюса, кривая В, 40 A 11 24108 С60N, 4 полюса, кривая В, 50 A 11	24617 C60N, 4 полюса, кривая D, 16 A 24618 C60N, 4 полюса, кривая D, 20 A	11 25017 Сб0Н, 4 полюса, кривая C, 40 A	12 12
24109 C60N, 4 полюса, кривая B, 63 A 11	24619 C60N, 4 полюса, кривая D, 25 A	11 25019 C60H, 4 полюса, кривая C, 63 A	12 12
24331 С60N, 2 полюса, кривая С, 1 А 11 24332 С60N, 2 полюса, кривая С, 2 А 11	24620 C60N, 4 полюса, кривая D, 32 A 24621 C60N, 4 полюса, кривая D, 40 A	25081 С60H, 1 полюс, кривая D, 2 A	12 12
24333 С60N, 2 полюса, кривая С, 3 А 11 24334 С60N, 2 полюса, кривая С, 4 А 11	24623 С60N, 4 полюса, кривая D, 50 A 24624 С60N, 4 полюса, кривая D, 63 A	25083 C60H, 1 полюс, кривая D, 4A	12
24335 С60N, 2 полюса, кривая С, 6 A 11 24336 С60N, 2 полюса, кривая С, 10 A 11	24699 С60H, 1 полюс, кривая В, 6 А 24700 С60H, 1 полюс, кривая В, 10 А	12 25085 C60H, 1 полюс, кривая D, 10 A	12 12
24337 C60N, 2 полюса, кривая C, 16 A 11	24701 С60Н, 1 полюс, кривая В, 16 А	12 25086 СБОН, ГПОЛЮС, КРИВАЯ D, ТОА	12 12
24339 C60N, 2 полюса, кривая C, 25 A 11	24703 С60Н, 1 полюс, кривая В, 25 А	12 25088 C60H, 1 полюс, кривая D, 25 A	12 12
24340 C60N, 2 полюса, кривая С, 32 A 11 24341 C60N, 2 полюса, кривая С, 40 A 11	24704 С60Н, 1 полюс, кривая В, 32 А 24705 С60Н, 1 полюс, кривая В, 40 А	12 25090 С60H, 1 полюс, кривая D, 40 A	12
24342 С60N, 2 полюса, кривая С, 50 A 11 24343 С60N, 2 полюса, кривая С, 63 A 11	24706 С60H, 1 полюс, кривая В, 50 А 24707 С60H, 1 полюс, кривая В, 63 А	12 25092 C60H, 1 полюс, кривая D, 63 A	12 12
24344 C60N, 3 полюса, кривая C, 1 A 11	24725 С60Н, 2 полюса, кривая В, 6 А	12 25108 С60H, 2 полюса, кривая D, 1 A	12 12
24346 C60N, 3 полюса, кривая C, 3 A 11	24727 С60Н, 2 полюса, кривая В, 16 А	12 25112 C60H, 2 HONIOCA, KDUBAR D, 3 A	12 12
24347 C60N, 3 полюса, кривая С, 4A 11 24348 C60N, 3 полюса, кривая С, 6A 11	24728 С60Н, 2 полюса, кривая В, 20 А 24729 С60Н, 2 полюса, кривая В, 25 А	25114 С60H, 2 полюса, кривая D, 6 A	12
24349 C60N, 3 полюса, кривая С, 10 A 11 24350 C60N, 3 полюса, кривая С, 16 A 11	24730 С60H, 2 полюса, кривая В, 32 А 24731 С60H, 2 полюса, кривая В, 40 А	25117 С60H, 2 полюса, кривая D, 16 A	12 12
24351 C60N, 3 полюса, кривая C, 20 A 11 24352 C60N, 3 полюса, кривая C, 25 A 11	24732 С60H, 2 полюса, кривая В, 50 А 24733 С60H, 2 полюса, кривая В, 63 А	12 25118 Соон, 2 полюса, кривая D, 20 A 12 25119 С60Н, 2 полюса, кривая D, 25 A	12 12
24353 C60N, 3 полюса, кривая C, 32 A 11	24738 С60Н, 3 полюса, кривая В, 6 А	25120 С60H, 2 полюса, кривая D, 32 A	12 12
24354 C60N, 3 полюса, кривая С, 40 A 11 24355 C60N, 3 полюса, кривая С, 50 A 11	24739 С60H, 3 полюса, кривая В, 10 А 24740 С60H, 3 полюса, кривая В, 16 А	25122 С60H, 2 полюса, кривая D, 50 A	12 12
24356 C60N, 3 полюса, кривая С, 63 A 11 24357 C60N, 4 полюса, кривая С, 1 A 11	24741 С60Н, 3 полюса, кривая В, 20 А 24742 С60Н, 3 полюса, кривая В, 25 А	25124 С60H, 3 полюса, кривая D, 1 A	12
24358 С60N, 4 полюса, кривая С, 2 А 11 24359 С60N, 4 полюса, кривая С, 3 А 11	24743 С60H, 3 полюса, кривая В, 32 А 24744 С60H, 3 полюса, кривая В, 40 А	12 25125 С60H, 3 полюса, кривая D, 2 A 12 25126 С60H, 3 полюса, кривая D, 3 A	12 12
24360 C60N, 4 полюса, кривая C, 4 A 11	24745 С60Н, 3 полюса, кривая В, 50 А	₁₂ 25127 Сб0Н, 3 полюса, кривая D, 4 А	12 12
24361 С60N, 4 полюса, кривая С, 6 А 11 24362 С60N, 4 полюса, кривая С, 10 А 11	24746 С60Н, 3 полюса, кривая В, 63 А 24751 С60Н, 4 полюса, кривая В, 6 А	25129 С60H, 3 полюса, кривая D, 10 A	12 12
24363 С60N, 4 полюса, кривая С, 16 A 11 24364 С60N, 4 полюса, кривая С, 20 A 11	24752 С60Н, 4 полюса, кривая В, 10 А 24753 С60Н, 4 полюса, кривая В, 16 А	25132 С60H, 3 полюса, кривая D, 20 A	12
24365 C60N, 4 полюса, кривая С, 25 A 11 24366 C60N, 4 полюса, кривая С, 32 A 11	24754 С60H, 4 полюса, кривая В, 20 А 24755 С60H, 4 полюса, кривая В, 25 А	12 25134 C60H, 3 полюса, кривая D, 32 A	12 12
24367 С60N, 4 полюса, кривая С, 40 A 11 24368 С60N, 4 полюса, кривая С, 50 A 11	24756 С60H, 4 полюса, кривая В, 32 А 24757 С60H, 4 полюса, кривая В, 40 А	12 25135 Сбин, 3 полюса, кривая D, 40 A	12 12
24369 C60N, 4 полюса, кривая C, 63 A 11	24758 С60Н, 4 полюса, кривая В, 50 А	12 25137 Сб0Н, 3 полюса, кривая D, 63 А	12 12
24395 C60N, 1 полюс, кривая С, 1 A 11 24396 C60N, 1 полюс, кривая С, 2 A 11	24759 С60H, 4 полюса, кривая В, 63 А 24900 С60H, 1 полюс, кривая С, 0,5 А	25139 С60H, 4 полюса, кривая D, 2 A	12 12
24397 C60N, 1 полюс, кривая C, 3 A 11 24398 C60N, 1 полюс, кривая C, 4 A 11	24901 С60H, 1 полюс, кривая С, 0,75 A 24902 С60H, 2 полюса, кривая С, 0,5 A	12 25141 С60Н, 4 полюса, кривая D, 4 А	12
24399 С60N, 1 полюс, кривая С, 6 A 11 24401 С60N, 1 полюс, кривая С, 10 A 11	24903 С60H, 2 полюса, кривая С, 0,75 A 24906 С60H, 3 полюса, кривая С, 0,5 A		12 12
24403 C60N, 1 полюс, кривая C, 16 A 11	24907 С60Н, 3 полюса, кривая С, 0,75 А	12 25145 С60H, 4 полюса, кривая D, 16 A	12 12
24404 С60N, 1 полюс, кривая С, 20 A 11 24405 С60N, 1 полюс, кривая С, 25 A 11	24908 С60Н, 4 полюса, кривая С, 0,5 А 24909 С60Н, 4 полюса, кривая С, 0,75 А	12 25147 С60Н, 4 полюса, кривая D, 25 А	12 12
24406 C60N, 1 полюс, кривая C, 32 A 11 24407 C60N, 1 полюс, кривая C, 40 A 11	24955 С60H, 1 полюс, кривая С, 1 А 24956 С60H, 1 полюс, кривая С, 2 А	12 25149 C60H, 4 полюса, кривая D, 40 A	12
24408 C60N, 1 полюс, кривая C, 50 A 11 24409 C60N, 1 полюс, кривая C, 63 A 11	24957 С60Н, 1 полюс, кривая С, 3 А 24958 С60Н, 1 полюс, кривая С, 4 А	12 25151 C60H, 4 полюса, кривая D, 63 A	12 12
24493 СбОN, 1 полюс, кривая D, 0,5 A 11 24494 СбОN, 2 полюса, кривая D, 0,5 A 11	24959 С60Н, 1 полюс, кривая С, 6 А 24960 С60Н, 1 полюс, кривая С, 10 А	12 25331 СБОС, 1 ПОЛЮС, КРИВАЯ В, Б А 12 25332 СБОС, 1 ПОЛЮС, КРИВАЯ В, 10 А	13 13
24495 C60N, 3 полюса, кривая D, 0,5 A 11	24961 С60Н, 1 полюс, кривая С, 16 А	12 25333 СбОL, 1 полюс, кривая В, 16 А	13 13
24496 С60N, 4 полюса, кривая D, 0,5 A 11 24565 С60N, 1 полюс, кривая D, 1 A 11	24962 С60Н, 1 полюс, кривая С, 20 А 24963 С60Н, 1 полюс, кривая С, 25 А	12 25335 C60L, 1 полюс, кривая В, 25 A	13 13
24566 C60N, 1 полюс, кривая D, 2 A 11 24567 C60N, 1 полюс, кривая D, 3 A 11	24964 С60H, 1 полюс, кривая С, 32 A 24965 С60H, 1 полюс, кривая С, 40 A	12 25337 C60L, 1 полюс, кривая В, 40 A	13
24568 С60N, 1 полюс, кривая D, 4 A 11 24569 С60N, 1 полюс, кривая D, 6 A 11	24966 С60H, 1 полюс, кривая С, 50 A 24967 С60H, 1 полюс, кривая С, 63 A	12 25338 СБОС, 1 ПОЛЮС, КРИВАЯ В, 50 А 12 25339 СБОС, 1 ПОЛЮС, КРИВАЯ В, 63 А	13 13
24571 C60N, 1 полюс, кривая D, 10 A 11	24981 С60Н, 2 полюса, кривая С, 1 А	12 25357 СБОЕ, 2 ПОЛЮСА, КРИВАЯ В, Б А	13 13
24572 С60N, 1 полюс, кривая D, 16 A 11 24573 С60N, 1 полюс, кривая D, 20 A 11	24982 С60H, 2 полюса, кривая С, 2 А 24983 С60H, 2 полюса, кривая С, 3 А	12 25359 С60L, 2 полюса, кривая В, 16 А	13 13
24574 C60N, 1 полюс, кривая D, 25 A 11 24575 C60N, 1 полюс, кривая D, 32 A 11	24984 С60Н, 2 полюса, кривая С, 4 А 24985 С60Н, 2 полюса, кривая С, 6 А	25361 C60L, 2 полюса, кривая В, 25 A	13
24576 С60N, 1 полюс, кривая D, 40 A 11 24578 С60N, 1 полюс, кривая D, 50 A 11	24986 С60H, 2 полюса, кривая С, 10 A 24987 С60H, 2 полюса, кривая С, 16 A	12 25362 С60L, 2 полюса, кривая В, 32 A 12 25363 С60L, 2 полюса, кривая В, 40 A	13 13
24579 C60N, 1 полюс, кривая D, 63 A 11	24988 С60Н, 2 полюса, кривая С, 20 А	12 25364 C60L, 2 полюса, кривая В, 50 A	13 13
24580 С60N, 2 полюса, кривая D, 1 A 11 24581 С60N, 2 полюса, кривая D, 2 A 11	24989 С60Н, 2 полюса, кривая С, 25 А 24990 С60Н, 2 полюса, кривая С, 32 А	12 25370 С60L, 3 полюса, кривая В, 6 А 25271 С60L 3 полюса, кривая В, 10 А	13 13
24582 C60N, 2 полюса, кривая D, 3 A 11 24583 C60N, 2 полюса, кривая D, 4 A 11	24991 С60H, 2 полюса, кривая С, 40 A 24992 С60H, 2 полюса, кривая С, 50 A	12 25372 С60L, 3 полюса, кривая В, 16 А	13
24584 С60N, 2 полюса, кривая D, 6 A 11 24585 С60N, 2 полюса, кривая D, 10 A 11	24993 С60Н, 2 полюса, кривая С, 63 А 24994 С60Н, 3 полюса, кривая С, 1 А	12 253/3 С60L, 3 полюса, кривая В, 20 A 12 25374 С60L, 3 полюса, кривая В, 25 A	13 13
24586 C60N, 2 полюса, кривая D, 16 A 11	24995 С60Н, 3 полюса, кривая С, 2 А	12 25375 СбUL, 3 ПОЛЮСА, КРИВАЯ В, 32 A	13 13
24587 С60N, 2 полюса, кривая D, 20 A 11 24589 С60N, 2 полюса, кривая D, 25 A 11	24996 С60Н, 3 полюса, кривая С, 3 А 24997 С60Н, 3 полюса, кривая С, 4 А	12 25377 C60L, 3 полюса, кривая В, 50 A	13 13
24590 С60N, 2 полюса, кривая D, 32 A 11 24591 С60N, 2 полюса, кривая D, 40 A 11	24998 С60H, 3 полюса, кривая С, 6 А 24999 С60H, 3 полюса, кривая С, 10 А	12 25383 C60L, 4 полюса, кривая В, 6 A	13
24593 С60N, 2 полюса, кривая D, 50 A 11 24594 С60N, 2 полюса, кривая D, 63 A 11			13 13

	_				
№ по каталогу стр.		№ по каталогу ст	rp.	№ по каталогу	стр.
25386 C60L, 4 полюса, кривая B, 20 A 1		26245 C60L4 полюса, кривая Z, 32 A	13		
25387 C60L, 4 полюса, кривая В, 25 А 1 25388 C60L, 4 полюса, кривая В, 32 А 1		26246 C60L 4 полюса, кривая Z, 40 A 26357-26370 C60LMA	13 24		
25389 С60L, 4 полюса, кривая В, 40 А 1	3	26502 Vigi C60, до 25 A, 2 полюса, 127 B, 30 мА	35		
25390 С60L, 4 полюса, кривая В, 50 А 1 25391 С60L, 4 полюса, кривая В, 63 А 1		26503 Vigi C60, до 25 А, 2 полюса, 127 В, 300 мА 26506 Vigi C60, до 63 А, 2 полюса, 127 В, 30 мА	35 35		
25392 C60L, 1 полюс, кривая C, 1 A 1	3	26507 Vigi C60, до 63 A 2 полюса, 127 B, 300 мА	35		
25393 C60L, 1 полюс, кривая C, 2 A 1 25394 C60L, 1 полюс, кривая C, 3 A 1		26581 Vigi C60, до 25 А, 2 полюса, 220-415 В, 30 мА 26583 Vigi C60, до 25 А, 2 полюса, 220-415 В, 300 мА	35 35		
25395 C60L, 1 полюс, кривая C, 4A 1	3	26588 Vigi C60, до 25 A, 3 полюса, 220-415 B, 30 мА	35 35		
25396 C60L, 1 полюс, кривая C, 6 A 1 25397 C60L, 1 полюс, кривая C, 10 A 1		26590 Vigi C60, до 25 А, 3 полюса, 220-415 В, 300 мА 26595 Vigi C60, до 25 А, 4 полюса, 220-415 В, 30 мА	35		
25398 С60L, 1 полюс, кривая С, 16 A 1 25399 С60L, 1 полюс, кривая С, 20 A 1		26597 Vigi C60, до 25 A, 4 полюса, 220-415 B, 300 мА 26611 Vigi C60, до 63 A, 2 полюса, 220-415 B, 30 мА	35 35		
25400 С60L, 1 полюс, кривая С, 20 A 1 25400 С60L, 1 полюс, кривая С, 25 A 1		26613 Vigi C60, до 63 A, 2 полюса, 220-415 B, 300 мА	35		
25401 C60L, 1 полюс, кривая C, 32 A 1 25402 C60L, 1 полюс, кривая C, 40 A 1		26616 Vigi C60, до 63 А, 2 полюса, 220-415 В, 300 🔄 мА 26620 Vigi C60, до 25 А, 3 полюса, 220-415 В, 30 мА	35 35		
25403 С60L, 1 полюс, кривая С, 50 А 1	3	26622 Vigi C60, до 25 A, 3 полюса, 220-415 B, 300 мА	35		
25404 C60L, 1 полюс, кривая C, 63 A 1 25406 C60L, 1 полюс, кривая C, 0,5 A 1		26631 Vigi C60, до 25 А, 3 полюса, 220-415 В, 300 🗟 мА 26643 Vigi C60, до 63 А, 4 полюса, 220-415 В, 30 мА	35 35		
25407 C60L, 2 полюса, кривая C, 0,5 A 1	3	26645 Vigi C60, до 63 A, 4 полюса, 220-415 B, 300 мА	35		
25408 C60L, 3 полюса, кривая C, 0,5 A 1 25409 C60L, 4 полюса, кривая C, 0,5 A 1		26648 Vigi C60, до 63 А, 4 полюса, 220-415 В, 300 🔄 мА 26923 OFS, блок-контакт для RCCB	35 34		
25418 С60L, 2 полюса, кривая С, 1 А 1 25419 С60L, 2 полюса, кривая С, 2 А 1			1, 34 21		
25420 С60L, 2 полюса, кривая С, 2 A 1 25420 С60L, 2 полюса, кривая С, 3 A 1			1,34		
25421 С60L, 2 полюса, кривая С, 4 А 1 25422 С60L, 2 полюса, кривая С, 6 А 1			1, 34 1, 34		
25423 C60L, 2 полюса, кривая C, 10 A 1	3	26960 MN мгновенного действия, 220-240 B пер. тока 21	1,34		
25424 C60L, 2 полюса, кривая С, 16 A 1 25425 C60L, 2 полюса, кривая С, 20 A 1		26961 MN мгновенного действия, 48 В пер. тока 26962 MN мгновенного действия, 48 В пост. тока	21 21		
25426 C60L, 2 полюса, кривая C, 25 A 1	3	26963 MN S с выдержкой времени, 0,2 с, 220-240 В пер. тока 21.	1, 34		
25427 C60L, 2 полюса, кривая С, 32 A 1 25428 C60L, 2 полюса, кривая С, 40 A 1		26970 Навесная блокировка, ячейка для 2 полюсов 23 26975 Клеммные заглушки для С60, 1 и 3 полюса	3, 34 23		
25429 C60L, 2 полюса, кривая C, 50 A 1	3	26976 Клеммные заглушки 23	3, 34		
25430 С60L,2полюса,криваяС,63A 1 25431 С60L, 3 полюса, кривая С, 1 A 1		26978 Клеммные заглушки 23 26979 MSU, 1 фаз.	3, 34 21		
25432 С60L, 3 полюса, кривая С, 2 А 1		26980 MSU, 3 фаз.	21		
25433 С60L, 3 полюса, кривая С, 3 А 1 25434 С60L, 3 полюса, кривая С, 4 А 1			3, 34 3, 34		
25435 С60L, 3 полюса, кривая С, 6 А 1 25436 С60L, 3 полюса, кривая С, 10 А 1		27000			
25437 С60L, 3 полюса, кривая С, 10 A 1 25437 С60L, 3 полюса, кривая С, 16 A 1		27046 Передаточный механизм	23		
25438 С60L, 3 полюса, кривая С, 20 А 1 25439 С60L, 3 полюса, кривая С, 25 А 1		27047 Разъемный фланец для рукоятки	23		
25440 С60L, 3 полюса, кривая С, 32 А 1	3	27048 Стационарная рукоятка 27052 Запасные защелки к С60	23 23		
25441 C60L, 3 полюса, кривая С, 40 A 1 25442 C60L, 3 полюса, кривая С, 50 A 1		27062 Фальш-модуль, 9 мм 27132 ОF, блок-контакт состояния для C32H-DC	23 23		
25443 С60L, 3 полюса, кривая С, 63 А 1	3	27135 SD, контакт сигнализации повреждения для C32H-DC	23		
25444 C60L, 4 полюса, кривая С, 1 А 1 25445 C60L, 4 полюса, кривая С, 2 А 1		27136 МХ + ОF, 220-415 В пер. тока 27137 МХ + ОF, 110-220 В пер. тока, 110-125 В пост. тока	23 23		
25446 С60L, 4 полюса, кривая С, 3 А 1		27138 MX + OF, 24-48 В пост. тока	23		
25447 C60L, 4 полюса, кривая С, 4 А 1 25448 C60L, 4 полюса, кривая С, 6 А 1		27140 МN мгновенного действия, 220-240 В пер. тока 27143 МN S с выдержкой времени 0,5 с, 220-240 В пер. тока	23 23		
25449 C60L, 4 полюса, кривая С, 10 A 1 25450 C60L, 4 полюса, кривая С, 16 A 1		27145 Навесная блокировка для С120, ячейка для 4 полюсов	23		
25451 C60L, 4 полюса, кривая C, 20 A 1	3	27151 Клеммные заглушки для C120/NG125,1 полюс без зажимов 27152 Защитные крышки винтов для C120, комплект из 10 шт.	23 23		
25452 C60L, 4 полюса, кривая C, 25 A 1 25453 C60L, 4 полюса, кривая C, 32 A 1		27153 Клеммные заглушки для C120/NG125, 1 полюс без зажимов 50 м2	23		
25454 С60L, 4 полюса, кривая С, 40 А	3	THORIOG GGS SAMMINGS SO MZ	20		
25455 C60L, 4 полюса, кривая С, 50 A 1 25456 C60L, 4 полюса, кривая С, 63 A 1	^	ССТ15268 Настенный фотоэлемент для IC	74		
26000		ССТ15368 ІС2000, сумеречный выключатель	72		
244	3	ССТ15400 ІНР 1с, программируемое реле времени, 7дн., 1 канал ССТ15401 ІНР+ 1с, программируемое реле времени, 7дн., 1 канал	63 63		
26135 C60L 1 полюс, кривая Z, 2 A 1	3	ССТ15401 ППР 1 С, программируемое реле времени, 7дн., 1 канала	63		
26136 С60L 1 полюс, кривая Z, 3 A 1 26137 С60L 1 полюс, кривая Z, 4 A 1		ССТ15403 IHP+ 2с, программируемое реле времени, 7дн., 2 канала ССТ15860 Комплект ПК для IHP	63		
26139 С60L 1 полюс, кривая Z, 6 A 1 26141 С60L 1 полюс, кривая Z, 10 A 1		ССТ15861 Картридж памяти для IHP	63 63		
26142 C60L 1 полюс, кривая Z, 16 A 1	3	MGN15707 SBI, комбинированный разъединитель-предохранитель			
26143 С60L 1 полюс, кривая Z, 20 A 1 26145 С60L 1 полюс, кривая Z, 25 A 1		50A, 1 полюс MGN15708 SBI, комбинированный разъединитель-предохранитель	42		
26146 C60L 1 полюс, кривая Z, 32 A 1	3	50А, нейтраль	42		
26147 С60L 1 полюс, кривая Z, 40 A 1 26155 С60L 2 полюса, кривая Z, 2 A 1		MGN15709 SBI, комбинированный разъединитель-предохранитель 50A, 1 полюс + нейтраль	42		
26157 C60L2 полюса, кривая Z, 3 A	3	MGN15710 SBI, комбинированный разъединитель-предохранитель			
26159 C60L2 полюса, кривая Z, 6 A 1	3	50A, 2 полюса MGN15711 SBI, комбинированный разъединитель-предохранитель	42		
26161 С60L 2 полюса, кривая Z, 10 A 1 26163 С60L 2 полюса, кривая Z, 16 A 1		50А, 3 полюса	42		
26164 C60L2 полюса, кривая Z, 20 A 1	3	MGN15712 SBI, комбинированный разъединитель-предохранитель 50A, 3 полюса + нейтраль	42		
26165 С60L2 полюса, кривая Z, 25 A 1 26166 С60L2 полюса, кривая Z, 32 A 1		MGN15713 SBI, комбинированный разъединитель-предохранитель			
26167 C60L2 полюса, кривая Z, 40 A	3	100A, 1 полюс MGN15714 SBI, комбинированный разъединитель-предохранитель	42		
26176 C60L3 полюса, кривая Z, 2A 1 26177 C60L3 полюса, кривая Z, 3A 1	3	100А, нейтраль	42		
26178 С60L3 полюса, кривая Z, 4 А 1	3	MGN15715 SBI, комбинированный разъединитель-предохранитель 100A, 1 полюс + нейтраль	42		
26180 С60L3 полюса, кривая Z, 6 A 1 26182 С60L3 полюса, кривая Z, 10 A 1	3	польс + неитраль МGN15716 SBI, комбинированный разъединитель-предохранитель			
26184 С60L 3 полюса, кривая Z, 16 A 1 26185 С60L 3 полюса, кривая Z, 20 A 1		100А, 2 полюса	42		
26224 C60L3 полюса, кривая Z, 25 A 1	3	MGN15717 SBI, комбинированный разъединитель-предохранитель 100A, 3 полюса	42		
26225 С60L3 полюса, кривая Z, 32 A 1 26226 С60L3 полюса, кривая Z, 40 A 1	3 3	MGN15718 SBI, комбинированный разъединитель-предохранитель			
26234 С60L4 полюса, кривая Z, 2 А 1	3	100А, 3 полюса + нейтраль	42		
26237 С60L4 полюса, кривая Z, 4 А 1	3				
26239 C60L4 полюса, кривая Z, 6 A 1	3				
26242 C60L4 полюса, кривая Z, 16 A 1	3				
26243 С60L 4 полюса, кривая Z, 20 A 1 26244 С60L 4 полюса, кривая Z, 25 A 1	3 3				
	-				

Защита цепей

Содержание	Страница
C60a	10
C60N	11
C60H	12
C60L	13
C120N	14
C120H	15
NG125N	16
NG125H	17
NG125L	18
С32H-DC постоянный ток	19
DPN N	20
Вспомогательные электрические	
устройства для C60, C120 и DPN N	21
Вспомогательные электрические	
устройства для C32H-DC	22
Аксессуары для С60 и С120	23
Защита двигателей	24
Мотор-редукторы Tm	25
Устройства автоматики	
повторного включения	27

Таблица выбора автоматических выключателей Multi 9

Норма	Ном. ток (А)	Напря- жение (В)	Тип	Кривые	Ток о ^о 4,5	гключ 6	ения (кл 10	A) 15	20	25	30	36	50
M3K 898	6 - 40	230-400	C60a	B/C									
(EN 60898)	0,5 - 63	230-400	C60N	B/C/D									
	0,5 - 63	230-400	C60H	B/C/D									
M9K 157.1	1 - 40	127-250	C32H-DC	С									
M9K 947.2	0,5 - 63	240-415	C60L	B/C/MA/Z									
(EN 60947.2)	63 - 125	230-400	C120N	С									
	10 - 125	230-400	C120H	С									
	1,6 - 63	220-415	NG125N	B/C/D									
	10-80	220-415	NG125H	С									
	10 - 80	220-415	NG125L	B/C/D/MA	١								

Ток отключения (кА)

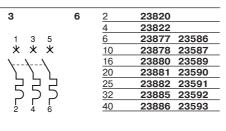
	` '
Выключатель	Ток отключения (кА) МЭК 947.2
C60a	5
C60N	10
C60H	15
C60L	15/20/25
C120N	10
C120H	15
NG125N	25
NG125H	36
NG125I	50

C60a

Автоматические выключатели

Кривые В и С

4500 M9K 898 5 κΑ M9K 947.2



Кол-во	Кол-во	Ном.ток	№ по ка	талогу
полюсов	модулей	(A)	Кривая	Кривая
	Ш=9 мм	(/	C	В
	-	0	-	_
1	2	2	23794	
		4	23796	
1		6	23849	23555
Ж		10	23850	23556
\		16	23851	23557
\				
Ь,		20	23852	23559
~		25	23853	23560
ر ا		32	23854	23561
2		40	23855	23562

2	4	2	23807
		4	23809
1 3		6	23863 23571
* *		10	23864 23572
F -		16	23865 23573
		20	23866 23574
\forall \forall		25	23867 23575
7 7		32	23868 23577
2 4		40	23869 23578

1	8	2	23833	
		4	23835	
1 3 5	7	6	23900 23602	
* * *	*	10	23901 23603	
/	7	16	23902 23604	
))))	20	23903 23605	
		25	23904 23606	
$\supset \supset \supset$	\supset	32	23905 23607	
2 4 6	I 8	40	23906 23608	
	•			

Применение

Коммутация и защита цепей от перегрузок и коротких замыканий в административных, промышленных и жилых зданиях.

Характеристики

- ном. ток: от 10 до 40 A при 30 °C;
- ном. напряжение: 230-400 В пер. тока;
- ток отключения:

Ном.ток Кол-во (A) полюсов		Напряжение (В)	Ток откл. (A)				
норма	M3K 898	, ,	, ,				
6 - 40 1		230-240	4 500				
	2, 3, 4	400-415	4 500				
норма	норма МЭК 947.2 (Icu)						
6 - 40	1	130	10 000				
		230-240	5 000				
		400-415	3 000				
	2, 3, 4	230-240	10 000				
		400-415	5 000				
		440	3 000				

■ кривые отключения:

□В - срабатывание электромагнитной защиты между 3- и 5-кратным значением ном. тока;

□ C - срабатывание электромагнитной защиты между 5- и 10-кратным значением ном. тока;

■ коммутационная износостойкость:

□ электрическая: 20 000 циклов (B/O);

□ механическая: 20 000 циклов (B/O);

■ рабочая температура:

от -30 °C до +60 °C;

■ тропическое исполнение: степень Т2 (влажность 95 % при 55 °C);

■ масса (г):

■ Macca (1).				
Кол-во полюсов	1	2	3	4
	110	220	340	450

■ присоединение:

через зажимы для кабелей сечением \square 25 мм 2 при ном. токе 25 A;

□ 35 мм² при ном. токе от 32 до 40 A;

■ установка: в щитах Mini Pragma, Kaedra, Prisma Pack, Prisma Plus G, Prisma Plus P.

■Допускается подключение питания как со стороны источника, так и со стороны нагрузки.

■ Вибрация (МЭК 68.2.6)

Кривые С, D 5-58 Hz =±0.5 mm 58-300 Hz=7 g Кривая В 5-13 Hz=±6 mm 13-300 Hz=4 g

■ Удар (МЭК 68.2.27)

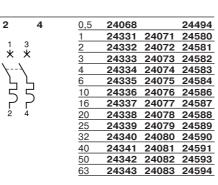
30 g - 18 ms

Кривая В: защита длинных линий, генераторов

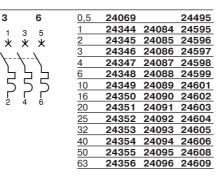
Кривая С: защита общих применений (розеточные группы, освещение)

C60N

Автоматические выключатели


Кривые B, C и D

6000 МЭК 898 10 кА МЭК 947.2



	.,	.,		. 10		
	Кол-во	Кол-во	Ном.	№ по ка	талогу	
	полю-	модулей	TOK	Кривая	Кривая	Кривая
	СОВ	Ш=9 мм	(A)	C,	В	D [']
	1	2	0,5	24067		24493
			1	24395	24045	24565
	1 X		2	24396	24046	24566
	×		3	24397	24047	24567
,	\		4	24398	24048	24568
	Ц		6	24399	24049	24569
	5		10	24401	24050	24571
			16	24403	24051	24572
	2		20	24404	24052	24573
			25	24405	24053	24574
			32	24406	24054	24575
			40	24407	24055	24576
			50	24408	24056	24578
			63	24409	24057	24579

	_						
4	8			0,5	24070		24496
		_	_	1	24357	24097	24610
1	3	5	/ \	2	24358	24098	24611
*	*	*	<u>*</u>	3	24359	24099	24612
/	/	\ -	_/	4	24360	24100	24613
Ц	ㄴ	Ц	Ъ,	6	24361	24101	24614
占	占	匕	占	10	24362	24102	24616
7	$^{\prime}$	7	7	16	24363	24103	24617
2	4	6	8	20	24364	24104	24618
				25	24365	24105	24619
				32	24366	24106	24620
				40	24367	24107	24621
				50	24368	24108	24623
				63	24369	24109	24624

Применение

Коммутация и защита цепей от перегрузок и коротких замыканий в административных, промышленных и жилых зданиях.

Характеристики

- ном. ток: 0,5-63 А при 30° С;
- ном. напряжение: 230-400 В пер. тока;
- ток отключения:

Ном.ток Кол-во (A) полюсов	Напряжение (В)	Ток откл. (A)
норма МЭК 898		
0,5 - 63 1	230-240	6 000
2, 3, 4	400-415	6 000
норма МЭК 947.	2 (Icu)	
0,5 - 63 1	130	20 000
	230-240	10 000
	400-415	3 000
2, 3, 4	230-240	20 000
	400-415	10 000
	440	6 000

Постоянный ток: см. стр. 73.

- однозначная индикация состояния "отключено":
- мгновенное включение;
- кривые отключения:
- □ В срабатывание электромагнитной защиты между 3- и 5-кратным значением ном. тока;
- □ С срабатывание электромагнитной защиты между 5- и 10-кратным значением ном. тока;
- □ D срабатывание электромагнитной защиты между 10- и 14-кратным значением ном. тока;
- коммутационная износостойкость:
 □ электрическая: 20 000 циклов (B/O);
 □ механическая: 20 000 циклов (B/O);
- рабочая температура:
- от -30 °C до +60 °C;
- тропическое исполнение: степень T2 (влажность 95 % при 55 °C);
- масса (г):

Кол-во полюсов	1	2	3	4
	110	220	340	450

■ присоединение:

через зажимы для кабелей сечением \square 25 мм² для ном. тока \leqslant 25 A; \square 35 мм² для ном. тока \leqslant 63 A;

- установка: в щитах Mini Pragma, Kaedra, Prisma Pack, Prisma Plus G, Prisma Plus P.
- Допускается подключение питания как со стороны источника, так и со стороны нагрузки.
- **Вибрация** (МЭК 68.2.6)

Кривые C, D 5-58 Hz =±0.5 mm 58-300 Hz=7 g Кривая B 5-13 Hz=±6 mm 13-300 Hz=4 g

■ Удар (МЭК 68.2.27) 30 g - 18 ms

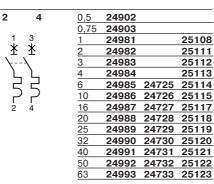
Кривая В: защита длинных линий, генераторов

Кривая С: защита общих применений (розеточные группы, освещение)

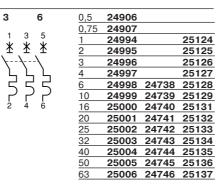
Кривая D: защита трансформаторов и двигателей (компрессоры, кондиционеры)

C60H

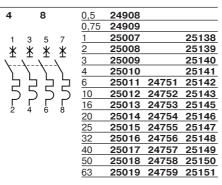
Автоматические выключатели


Кривые B, C и D

10000 МЭК 898 15 кА МЭК 947.2



	Кол-во модулей Ш = 9 мм	Ном. ток (A)	№ по ка Кривая С	талогу Кривая В	Кривая D
1	2	0,5	24900		
		0,75	24901		
1		1	24955		25080
¥		2	24956		25081
\		<u>2</u> 3	24957		25082
Ъ		4	24958		25083
\prec		6	24959	24699	25084
5		10	24960	24700	25085
2		16	24961	24701	25086
		20	24962	24702	25087
		25	24963	24703	25088
		32	24964	24704	25089
		40	24965	24705	25090
		50	24966	24706	25091
		63	24967	24707	25092



Применение

Коммутация и защита цепей от перегрузок и коротких замыканий в административных, промышленных и жилых зданиях.

Характеристики

- ном. ток: 0,5-63 А при 30 °C;
- ном. напряжение: 230-400 В пер. тока;

TOV	отключения:	
IUN	отключения.	

Ном.то (A)	к Кол-во полюсов	Напряжение (В)	Ток откл. (A)
норма	M3K 898		
0,5 - 63	1	230-240	10 000
	2, 3, 4	400-415	10 000
норма	M3K 947.2	2 (Icu)	
0,5 - 63	1	130	30 000
		240	15 000
		415	4 000
	2, 3, 4	240	30 000
		415	15 000
		440	10 000

- однозначная индикация состояния "отключено";
- мгновенное включение;
- кривые отключения:
- □ В срабатывание электромагнитной защиты между 3- и 5-кратным значением ном. тока;
- □ C срабатывание электромагнитной защиты между 5- и 10-кратным значением ном. тока;
- □ D срабатывание электромагнитной защиты между 10- и 14-кратным значением ном. тока;
- коммутационная износостойкость:
 □ электрическая: 20 000 циклов (B/O);
 □ механическая: 20 000 циклов (B/O);
- рабочая температура:
- от -30 °C до +60 °C;
- тропическое исполнение: степень T2 (влажность 95 % при 55 °C);
- . ■ масса (г):

i Macca (i).				
Кол-во полюсов	1	2	3	4
	110	220	340	450

■ присоединение:

- через зажимы для кабелей сечением \Box 25 мм² для ном. тока \leq 25 A;
- \square 35 мм 2 для ном. тока \leqslant 63 A;
- установка: в щитах Mini Pragma, Kaedra, Prisma Pack, Prisma Plus G, Prisma Plus P.
- опускается подключение питания как со стороны источника, так и со стороны нагрузки.

■ Вибрация (МЭК 68.2.6)

Кривые С, D 5-58 Hz =±0.5 mm 58-300 Hz=7 g Кривая В 5-13 Hz=±6 mm 13-300 Hz=4 g

■ Удар (МЭК 68.2.27) 30 g - 18 ms

Кривая В: защита длинных линий, генераторов

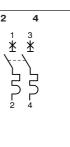
Кривая С: защита общих применений (розеточные группы, освещение)

Кривая D: защита трансформаторов и двигателей (компрессоры, кондиционеры)

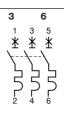
10 000

C60L

Автоматические выключатели


Кривые В, С и Z

M9K 947.2 3025-95 25000 A (≤ 25 A) 20000 A (32 - 40 A) 15000 A (50 - 63 A)


Кол-во	Кол-во модулей	Ном.	№ по ката Кривая	логу Кривая	Кривая
СОВ	Ш = 9 мм	(A)	C,	В	Z [']
1	2	0,5	25406		
1		1	25392		26133
*		2	25393		26135
/ _T		3	25394		26136
\		4	25395		26137
느		6	25396	25331	26139
5		10	25397	25332	26141
Ľ		16	25398	25333	26142
2		20	25399	25334	26143
		25	25400	25335	26145
		32	25401	25336	26146
		40	25402	25337	26147
		50	25403	25338	
		63	25404	25339	

0,5	25407		
1	25418		
2	25419		26155
3	25420		26157
4	25421		26158
6	25422	25357	26159
10	25423	25358	26161
16	25424	25359	26163
20	25425	25360	26164
25	25426	25361	26165
32	25427	25362	26166
40	25428	25363	26167
50	25429	25364	
63	25430	25365	

0,5	25408		
1	25431		
2	25432		26176
2 3	25433		26177
4	25434		26178
6	25435	25370	26180
10	25436	25371	26182
16	25437	25372	26184
20	25438	25373	26185
25	25439	25374	26224
32	25440	25375	26225
40	25441	25376	26226
50	25442	25377	
63	25443	25378	

4	8		0,5	25409		
			1	25444		
1	3 5	7	2	25445		26234
X	* *	X	3	25446		26236
\	\\ ⁻	\	4	25447		26237
上	$\Gamma \Gamma$	Γ.	6	25448	25383	26239
2	22	2	10	25449	25384	26241
رہ	ر ر	ر	16	25450	25385	26242
2	4 6	8	20	25451	25386	26243
			25	25452	25387	26244
			32	25453	25388	26245
			40	25454	25389	26246
			50	25455	25390	
			63	25456	25301	

Кривая В: защита длинных линий, генераторов

Кривая С: защита общих применений (розеточные группы, освещение)

Кривая Z: защита электронных цепей

Применение

Коммутация и защита цепей от перегрузок и коротких замыканий в административных, промышленных и жилых зданиях.

ДСТУ

Характеристики

- ном. ток: 0,5 63 А при 40 °C;
- ном. напряжение: 240-415 В пер. тока;

■ ток о	тключени	я:	-		
Ном.ток Кол-во Напряжение Ток					
(A)	полюсов	(B) ·	откл.(А)		
норма	M 3K 947 (lcu)			
0,5 - 25	1	230-240	25 000		
	1 (1)	400-415	6 000		
	2, 3, 4	230-240	50 000		
		400-415	25 000		
		440	20 000		
32 - 40	1	230-240	20 000		
		400-415	5 000		
	2, 3, 4	230-240	40 000		
		400-415	20 000		
		440	15 000		
50 - 63	1	230-240	15 000		
		400-415	4 000		
	2, 3, 4	230-240	30 000		
		400-415	15 000		

440 (1) Ток отключения для одного полюса в режиме с изолированной нейтралью IT.

- однозначная индикация состояния "отключено";
- мгновенное включение;
- кривые отключения:

□ В - срабатывание электромагнитной защиты между 3,2- и 4,8-кратным значением ном. тока;

□ С - срабатывание электромагнитной защиты между 7- и 10-кратным значением ном. тока;

□ Z - срабатывание электромагнитной защиты между 2,4- и 3,6- кратным значением номинального тока;

- коммутационная износостойкость: □ электрическая: 20 000 циклов (В/О); □ механическая: 20 000 циклов (B/O);
- рабочая температура: от -30 °C до +60 °C;

■ тропическое исполнение: степень Т2 (влажность 95 % при 55 °C);

■ масса (г):

Кол-во полюсов 1

■ присоединение:

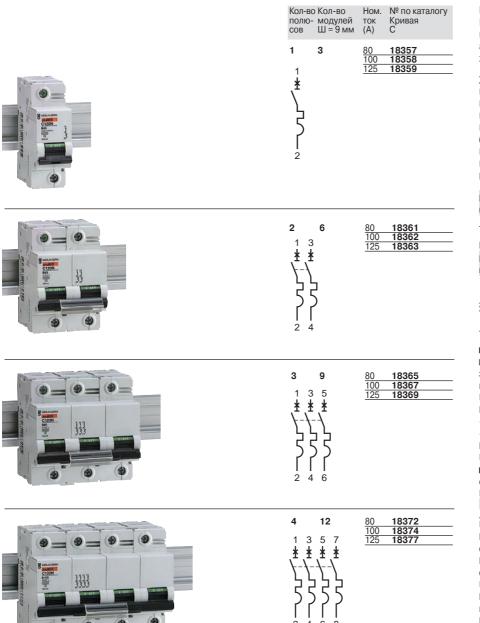
через зажимы для кабелей сечением □ 25 мм² для ном. тока ≤ 25 A; □ 35 мм² для ном. тока ≤ 63 A;

- установка: в щитах Mini Pragma, Kaedra, Prisma Pack, Prisma Plus G, Prisma Plus P.
- Допускается подключение питания как со стороны источника, так и со стороны нагрузки.

■ Вибрация (МЭК 68.2.6)

Кривые C, D $5-58 \text{ Hz} = \pm 0.5 \text{ mm}$ 58-300 Hz=7 g Кривая В 5-13 Hz=±6 mm

13-300 Hz=4 g


■ Удар (МЭК 68.2.27) 30 g - 18 ms

C120N

Автоматические выключатели

Кривая С

ДСТУ 3025-95 EN 60898: 10000 -M9K 60947.2: 10 KA

Применение

Коммутация и защита цепей от перегрузок и коротких замыканий в административных, промышленных и жилых зданиях.

Характеристики

- ном. ток: 63 125 А;
- ном. напряжение: < 440 В пер. тока;</p>
- напряжение уровня изоляции: 500 В;
- стойкость к импульсному напряжению: 6 κB;
- соответствует норме EN 60898;
- ток отключения:
- □ по МЭК 60898

Кол-во	Напряжение	Ток
полюсов	(B)	отключения (A)
1, 2, 3, 4	230-400	10 000

□ по МЭК 60947.2 (Icu)

Кол-во	Напряжение	Ток
полюсов	(B)	отключения (А)
1	130	20 000
	230-240	10 000
	400-415	3 000
2, 3, 4	230-240	20 000
	400-415	10 000
	440	6 000

■ кривые отключения:

- □ С срабатывание электромагнитной защиты между 5- и 10-кратным значением ном. тока;
- коммутационная износостойкость:

□ электрическая:

- 63 А: 10 000 циклов (В/О);
- 80-125 А: 5 000 циклов (В/О);
- □ механическая: 20 000 циклов (В/О);
- класс ограничения: 3; ■ рабочая температура:
- от -30 °C до +60 °C;

масса (г.):		
1P	2P	3P	4P
205	410	615	820

■ присоединение:

□ через зажимы для гибких кабелей: сечением от 1,5 до 35 мм²;

□ через зажимы для жестких кабелей: сечением от 1 до 50 мм²;

■ маркировка:

🗆 4 зажима, маркировка рядом с верхней клеммой;

□ прозрачная накладка для маркировки на рычаге включения (2, 3, 4 полюса);

■ степень загрязнения: 3 (применение в промышленности):

■ степень защиты:

□ при открытом монтаже - IP20; □ установка: в щитах Mini Pragma,

Kaedra, Prisma Pack, Prisma Plus G, Prisma Plus P.

■ Допускается подключение питания как со стороны источника, так и со стороны нагрузки.

■ Вибрация (МЭК 68.2.6)

Кривые B, C, D 5-60 Hz =±0.435 mm 60-300 Hz=6 g

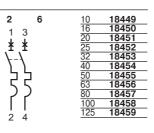
■ Удар (МЭК 68.2.27)

15 g - 11 ms

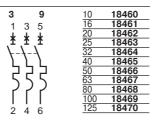
Кривая С: защита общих применений (розеточные группы, освещение)

C120H

Автоматические выключатели


Кривая С

EN 60898: ДСТУ 3025-95 15000 МЭК 60947.2: 15 кА



Кол-во	Кол-во	Ном.	№ по кат.
полю-	модулей	ток	Кривая
сов	Ш = 9 мм	(A)	С
1 *	3	10 16 20 25 32 40 50 63 80 100 125	18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448

4 12	10	18471
1 3 5 7	16	18472
1 1 1 1	20	18473
* * * *	25	18474
F-7-7-7	10 16 20 25 32 40 50	18475
1 1 1 1	40	18476
ככככ	50	18477
5555	63	18478
ノノノノ	80 100	18479
	100	18480
2 4 6 8	125	18481
2 4 0 0		

Применение

Коммутация и защита цепей от перегрузок и коротких замыканий в административных, промышленных и жилых зданиях.

Характеристики

- ном. ток: 10 125 A;
- ном. напряжение: ≥ 440 В пер. тока;
- напряжение уровня изоляции: 500 B;
- стойкость к импульсному напряжению: 6 кВ;
- соответствует норме EN 60898;
- ток отключения:

□ по МЭК 60898

Кол-во	Напряжение	Ток
полюсов	(B)	отключения (А)
1, 2, 3, 4	230-400	15 000

□ по МЭК 60947.2 (Icu)

Кол-во	Напряжение	Ток
полюсов	(B)	отключения (А)
1	130	30 000
	230-240	15 000
	400-415	4 500
2, 3, 4	230-240	30 000
	400-415	15 000
	440	10 000

■ кривые отключения:

 \Box \dot{C} - срабатывание электромагнитной защиты между 5- и 10-кратным значением ном. тока;

■ коммутационная износостойкость:

□ электрическая:

- 63 А: 10 000 циклов (В/О);
- 80-125 A: 5 000 циклов (B/O);
- □механическая: 20 000 циклов (B/O);
- класс ограничения: 3;
- рабочая температура:

от -30 °C до +60 °C;

■ масса (г):

1P	² P	3P	4P
205	410	615	820

присоединение:

 \square через зажимы для гибких кабелей: сечением от 1,5 до 35 мм 2 ;

 \square через зажимы для жестких кабелей: сечением от 1 до 50 мм 2 ;

■ маркировка:

□ 4 зажима, маркировка рядом с верхней клеммой;

□ прозрачная накладка для маркировки на рычаге включения (2, 3, 4 полюса);

■ степень загрязнения: 3 (применение в промышленности);

■ степень защиты:

□ при открытом монтаже - IP20;

■ установка: в щитах Mini Pragma, Kaedra, Prisma Pack, Prisma Plus G, Prisma Plus P.

■Допускается подключение питания как со стороны источника, так и со стороны нагрузки.

■ Вибрация (МЭК 68.2.6)

Кривые B, C, D 5-60 Hz =±0.435 mm 60-300 Hz=6 g

■ Удар (МЭК 68.2.27)

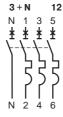
15 g - 11 ms

NG125N

Автоматические выключатели

Кривые B, C, D

МЭК 947.2: 25 кА ДСТУ 3025-95



Кол-во полюсов	Кол-во модулей Ш = 9 мм	TOK		Кривая D
1 * \	3	10 16 20 25 32 40 50 63 80	18610 18611 18612 18613 18614 18615 18616 18617	

2	6	10	18621	
		16	18622	
1 3		20	18623	
* *		25	18624	
_ '_		20 25 32 40 50 63 80	18625	
7-1		40	18626	
44		50	18627	
~ ~		63	18628	
)		80	18629	
Γ				
1 1				
2 4				

10	18632			_
16	18633			
20	18634			
25				_
32				
40				
50				
_63	18639			
80	18640	18663	18669	
125	18644	18665	18671	
	16 20 25 32 40 50 63	16 18633 20 18634 25 18635 32 18636 40 18637 50 18638 63 18639 80 18640 100 18642	16 18633 20 18634 25 18635 32 18636 40 18637 50 18638 63 18639 80 18640 18663 100 18642 18664	16 18633 20 18634 25 18635 32 18636 40 18637 50 18638 63 18639 80 18640 18663 18669 100 18642 18664 18670

10	18649		
16	18650		
20	18651		
25	18652		
32	18653		
40	18654		
50	18655		
63	18656		
80	18658	18666	18672
100	18660	18667	18673
125	18662	18668	18674

■ Вибрация (МЭК 68.2.6) Кривые С, D 5-60 Hz =±0.435 mm 58-300 Hz=6 g Кривая В 5-60 Hz=±0.35 mm 13-300 Hz=4 g ■ Удар (МЭК 68.2.27)

■ Удар (МЭК 68.2.2 15 g - 11 ms

Применение

- Выключатели, специально адаптированные для цепей, требующих высокую отключающую способность.
- Вводные устройства
- Фидерные аппараты

Общие характеристики

- ном. ток 10 125 А при 40 °C;
- рабочая температура: от -30 °C до +70 °C;
- максимальная стойкость к импульсному напряжению: 8 кВ;
- напряжение изоляции: 690 B;
- максимальное номинальное напряжение: 500 В пер. тока;
- ток отключения: по норме MЭК 947.2:

Кол-во	Напряжение	Ток
полюсов	(В) пер. тока	отключения (А)
1	220-240	25 000
1	380-415	6 000
2, 3, 4	380-415	25 000

- кривые отключения:
- \square В срабатывание электромагнитной защиты при 4-кратном значении ном. тока \pm 20 %;
- \square С срабатывание электромагнитной защиты при 8-кратном значении ном. тока \pm 20 %;
- $\hfill \square$ D срабатывание электромагнитной защиты при 12-кратном значении ном. тока $\pm\,20~\%;$
- трехпозиционная рукоятка управления: "включено- отключено - аварийное отключение";

Гарантированная индикация

отключенного состояния (аналогична видимому разрыву)

- мгновенное включение;
- встроенная блокировка (ключ или пломба) для 3-х и 4-х полюсных;
- визуальная индикация аварийного отключения на передней панели посредством:
- □ цветового индикатора;
- □ положения рукоятки: "отключено";
- кнопка тестирования для контроля нормального функционирования расцепителя:
- коммутационная износостойкость: 10 000 циклов при ном. токе;
- тропическое исполнение по нормам МЭК 68.1: степень Т2 (относительная влажность 95 % при 55°C);
- масса (г):

Кол-во полюсов	1	2	3	4
	240	480	720	960

- установка: в щитах Mini Pragma, Kaedra, Prisma Pack, Prisma Plus G, Prisma Plus P;
- Допускается подключение питания как со стороны источника, так и со стороны нагрузки.
- степень защиты: IP20;
- присоединение:

□ ном. ток < 63 А: через зажимы для медного кабеля сечением

от 1,5 до 50 мм²;

 \square ном. ток от 80 до 125 А : через зажимы для медного кабеля сечением от 16 до 70 мм 2 ;

□ алюминиевый или медный кабель с наконечником, или шинки для присоединения;

□ втычные контакты "Фастон" для присоединения вспомогательных цепей.

Кривая В: защита длинных линий, генераторов

Кривая С: защита общих применений (розеточные группы, освещение)

Кривая D: защита трансформаторов и двигателей (компрессоры, кондиционеры)

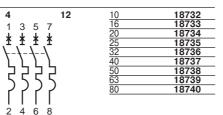
NG125H

Автоматические выключатели


Кривая С

МЭК 947.2: 36 кА ДСТУ 3025-95

Кол-во полюсов	Кол-во модулей Ш = 9 мм	Ном. ток (A)	№ по каталогу Кривая С
1	3	10	18705
1		16	18706
.i.		16 20 25 32 40 50 63 80	18707
Ϋ́		25	18708
\		32	18709
)		40	18710
		50	18711
5		63	18712
)		80	18713
2			



3	9	10	18723
1 3 5		16	18724
1 1 1		20	18725
ŢŢŢŢ		20 25 32 40	18726
F-4-4		32	18727
$\Gamma \Gamma \Gamma$		40	18728
777		50 63 80	18729
555		63	18730
777		80	18731
111			
2 4 6			

■ Вибрация (МЭК 68.2.6) Кривые С, D 5-60 Hz =±0.435 mm 58-300 Hz=6 g Кривая В 5-60 Hz=±0.35 mm 13-300 Hz=4 g ■ Удар (МЭК 68.2.27) 15 g - 11 ms Применение

Выключатели, специально адаптированые для цепей, требующих высокую отключающую способность.

- Вводные устройства
- Фидерные аппараты

Общие характеристики

- ном. ток 10 80 А при 40 °C;
- рабочая температура: от -30 °C до +70 °C;
- максимальная стойкость к импульсному напряжению: 8 кВ;
- напряжение изоляции: 690 В;
- максимальное номинальное напряжение: 500 В пер. тока;
- ток отключения: по норме МЭК 947.2:

Кол-во	Напряжение	Ток
полюсов	(В) пер. тока 220-240	отключения (А)
1	220-240	36 000
1	380-415	9 000
2, 3, 4	380-415	36 000
_		

- кривые отключения:
- \square C срабатывание электромагнитной защиты при 8-кратном значении ном. тока \pm 20 %;
- трехпозиционная рукоятка управления: "включено- отключено - аварийное отключение";

Гарантированная индикация

отключенного состояния (аналогична видимому разрыву)

- мгновенное включение;
- встроенная блокировка (ключ или пломба) для 3-х и 4-х полюсных;
- визуальная индикация аварийного отключения на передней панели посредством:
- □ цветового индикатора;
- □ положения рукоятки: "отключено";
- кнопка тестирования для контроля нормального функционирования расцепителя;
- коммутационная износостойкость: 10 000 циклов при ном. токе;
- ■тропическое исполнение по нормам МЭК 68.1: степень Т2 (относительная влажность 95 % при 55°C);
- масса (г):

Кол-во полюсов	1	2	3	4
	240	480	720	960

- ■установка: в щитах Mini Pragma, Kaedra, Prisma Pack, Prisma Plus G, Prisma Plus P;
- ■Допускается подключение питания как со стороны источника, так и со стороны нагрузки.
- степень защиты: IP20;
- присоединение:

 \square ном. ток < 63 А: через зажимы для медного кабеля сечением от 1,5 до 50 мм 2 ;

 \square ном. ток 80 А : через зажимы для медного кабеля сечением от 16 до 70 мм 2 ;

□ алюминиевый или медный кабель с наконечником, или шинки для присоединения;

□ втычные контакты "Фастон" для присоединения вспомогательных цепей.

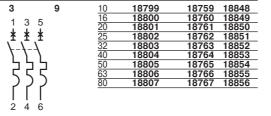
Кривая С: защита общих применений (розеточные группы, освещение)

NG125L

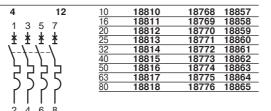
Автоматические выключатели

Кривые B, C, D

МЭК 947.2: 50 кА ДСТУ 3025-95



Кол-во полюсов	Кол-во модулей Ш = 9 мм	Ном. ток (A)	№ по катало Кривая С	гу Кривая В	Кривая D
1	3	10	18777	18741	18830
1		16	18778	18742	18831
i.		20	18779	18743	18832
Ť		20 25 32 40 50	18780	18744	18833
\		32	18781	18745	18834
)		40	18782	18746	18835
ב		50	18783	18747	18836
5		63	18784	18748	18837
)		80	18785	18749	18838
1					
2					
_					



2	6	10	18788	18750	18839
1 3		16	18789	18751	18840
1 1		20	18790	18752	18841
X X		25	18791	18753	18842
/J		32	18792	18754	18843
))		40	18793	18755	18844
		50	18794	18756	18845
55		63	18795	18757	18846
77		80	18796	18758	18847
2 4					

■ Вибрация (МЭК 68.2.6) Кривые С, D 5-60 Hz =±0.435 mm 58-300 Hz=6 g Кривая В 5-60 Hz=±0.35 mm

13-300 Hz=4 g ■ Удар (МЭК 68.2.27) 15 g - 11 ms

Кривая В: защита длинных линий, генераторов

Кривая С: защита общих применений (розеточные группы, освещение)

Кривая D: защита трансформаторов и двигателей (компрессоры, кондиционеры)

Применение

Выключатели, специально адаптированые для цепей, требующих высокую отключающую способность.

- Вводные устройства
- Фидерные аппараты

Общие характеристики

- ном. ток 10 80 А при 40 °C;
- рабочая температура: от -30 °C до +70 °C;
- максимальная стойкость к импульсному напряжению: 8 кВ;
- напряжение изоляции: 690 B;
- максимальное номинальное напряжение: 500 В пер. тока
- ток отключения: по норме МЭК 947.2:

Кол-во	Напряжение	Ток
полюсов	(В) пер. тока	отключения(А)
1	220-240	50 000
1	380-415	12 500
2, 3, 4	380-415	50 000

коивые отключения:

 \square В - срабатывание электромагнитной защиты при 4-кратном значении ном. тока \pm 20 %;

 \square C - срабатывание электромагнитной защиты при 8-кратном значении ном. тока \pm 20 %;

 \square D - срабатывание электромагнитной защиты при 12-кратном значении ном. тока \pm 20 %;

 \square MA - срабатывание защиты от К.З. при 12 $\ln \pm 20\%$ (без тепловой защиты);

- трехпозиционная рукоятка управления: "включено- отключено - аварийное отключение";
- встроенная блокировка;
- визуальная индикация аварийного отключения на передней панели посредством:
- □ светового индикатора;
- □ положения рукоятки: "отключено";
- кнопка тестирования для контроля нормального функционирования расцепителя;
- коммутационная износостойкость: 10 000 циклов при ном. токе;
- ■тропическое исполнение по нормам МЭК 68.1: степень Т2 (относительная влажность 95 % при 55°C);
- масса (г):

Кол-во полюсов	1	2	3	4
	240	480	720	960

- установка: в щитах Mini Pragma, Kaedra, Prisma Pack, Prisma Plus G, Prisma Plus P.
- Допускается подключение питания как со стороны источника, так и со стороны нагрузки;
- степень защиты: IP20;
- присоединение:

□ ном. ток < 63 А: через зажимы для медного кабеля сечением от 1,5 до 50 мм²;

 \square ном. ток 80 A : через зажимы для медного кабеля сечением от 16 до 70 мм 2 ;

□ алюминиевый или медный кабель с наконечником, или шинки для присоединения:

□ втычные контакты "Фастон" для присоединения вспомогательных цепей.

C32H-DC Автоматические выключателиКривая С

мэк 157.1 10000 а Постоянный ток

Кол-во полю-	Кол-во модулей	Ном.	№ по каталогу
СОВ	Ш=9 мм	(A)	Кривая С
1	2	1	20531
_		2	20532
1 X		2 3 6	20533
Ж		6	20534
\		10	20535
)		16	20536
		20	20537
5		25 32	20538
l		32	20539
+		40	20540
2	4	1	20541
- +		2	20542
		1 2 3 6	20543
1 3 X X		6	20544
、^ 、^		10	20545
f}		16	20546
_ _ L	1	20	20547
55	,	25	20548
	,	25 32	20549
1 I 2 4		40	20550

Применение

M9K 947.2:

Коммутация и защита цепей постоянного тока от коротких замыканий и перегрузок (цепи аварийного освещения, автоматики, зарядных устройств, телефонной сети).

Характеристики

- ном. ток: от 1 до 40 A при 40 °C;
- раб. температура: от -30°C до + 55°C;
- ном. напряжение:

□ однополюсный - 125 В пост. тока; □ двухполюсный - 250 В пост. тока;

■ ток отключения:

Ном.токКол-во (A) полюсов норма МЭК 157.1		Напряжение (B)	Ток откл. (А)
1 - 40	1	125	10 000
	2	125	20 000
		250	10 000

■ кривые отключения:

- □ С срабатывание электромагнитной защиты между 7- и 10-кратным значением ном. тока;
- количество циклов (B/O):
- □ 10 000 L/R при 0,015 c;
- тропическое исполнение: степень T2 (влажность 95 % при 55 °C);
- присоединение: через зажимы для гибкого кабеля сечением до16 мм² или для жесткого кабеля сечением до 25 мм².

Необходимо соблюдать полярность подключения питания, как указано на аппарате.

■ Вибрация (МЭК 68.2.6)

Кривая С 0-8.5 Hz =±10 mm 8.5-300 Hz=3 g

■ Удар (МЭК 68.2.27)

30 g - 18 ms

DPN N

Автоматические выключатели

Кривые В и С

Кол-во Кол-во	Ном.	№ по катало	ГУ
полю- модулей	TOK	Кривая	Кривая
сов Ш = 9 мм	(A)	Ċ	B
полюс 2	6	19264	19250
+	10	19266	19252
нейтраль	13	19267	19253
	16	19268	19254
N 1	20	19269	19255
1 1	25	19270	19256
↓	32	19271	19257
/ _7	40	19272	19258
7-7			
5			
1 5			
1)			

2 Ν

Кривая С

Применение

Управление и защита цепей с глухозаземленной нейтралью (ТТ) или с заземленной нейтралью у источника питания (TNS) от перегрузок и коротких замыканий в жилых, общественных и $\mathrm{c/x}$ сооружениях.

Характеристики

- ном. ток: 6 32 А при 30 °C;
- ном. напряжение: 230 В пер. тока;
- ток отключения:
- □ MЭK 898: 4500 A;
- кривые отключения:

срабатывание электромагнитной защиты между 5- и 10-кратным значением ном. тока;

- мгновенное включение;
- количество циклов (B/O):

□ механических: 20 000: 16 A - 20 000; □ электрических :

20 A - 15 000; 25-32 A - 10 000;

■ тропическое исполнение: степень Т2

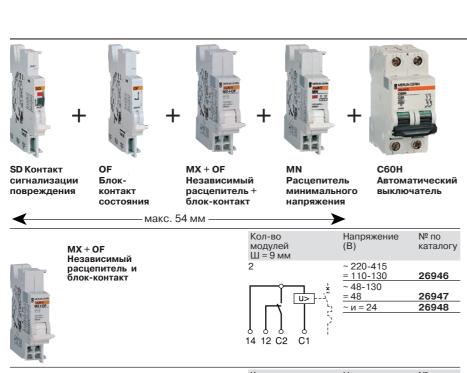
(влажность 95 % при 55 °C);

- масса: 90 г;
- присоединение: через зажимы для кабеля сечением от 16 мм².

Кривая В

Применение

Управление и защита цепей от перегрузок (для протяженных и ответственных кабельных линий, не согласующихся с кривой С).


Характеристики

- ном. ток: 6 32 А при 30 °C;
- кривые отключения:

срабатывание электромагнитной защиты между 3- и 5-кратным значением ном. тока;

■ другие характеристики: идентичны аппаратам DPN, кривая C.

Вспомогательные электрические устройства для C60, C120 и DPN N

MN Расцепитель минимального напряжения

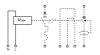
Кол-во Напряжение № по модулей (В) каталогу Ш = 9 мм

 МN мгновенного действия

 2
 ~ 220-240
 26960

 ~ 48
 26961

 = 48
 26962


 MN S с выдержкой времени
 0,2 с

 2
 ~220-240
 26963

MSU Расцепитель перенапряжения

Кол-во модулей Ш = 9 мм	Напряжение порога (B)	№ по каталогу
2	~ 275 1 ф.	26979

Кривая срабатывания на стр. 25

SD Контакт сигнализации повреждения

Кол-во модулей Ш = 9 мм	№ по каталогу
1	26927

ОF Блок-контакт состояния

Кол-во	№ по
модулей	каталогу
Ш = 9 мм	
1	26924

Вспомогательные электрические устройства позволяют осуществлять дистанционное отключение и сигнализацию состояния автоматических выключателей C60, C120 и DPN. Они монтируются с левой стороны от выключателя.

Расцепители

■ MX + OF

При подаче напряжения на обмотку независимого расцепителя происходит отключение выключателя:

□ выключатель может иметь блок-контакт SD для сигнализации повреждения;

□ выключатель может иметь контакт ОF для сигнализации состояний "Включено" и "Отключено".

■ MN

При падении напряжения в сети до 35 - 70 % происходит отключение выключателя и его блокировка до восстановления номинального напряжения.

■ MN

При необходимости может управляться кнопкой; расцепитель минимального напряжения с нерегулируемой выдержкой времени 0,2 с отстраивается от кратковременных падений напряжения.

Потребление мощности

попросмение шещнести										
Тип	Напряжение (В)	(Вт и	ли ВА)							
MX+OF	~ 415	импульс	120							
	~ 220-240	импульс	50							
	~ 110-130	импульс	200							
	= 110-130	импульс	10							
	~ и = 48	импульс	22							
	~ и = 24	импульс	120							
MN	~ 220-240	постоянно	4,1							
	~ 48	постоянно	4,3							
	= 48	постоянно	2,0							
MNS	~ 220-240	постоянно	4,1							

Сигнализация

■ OF

Этот блок-контакт монтируется с левой стороны выключателя и сигнализирует состояния "Включено" или "Отключено".

■ SD

Этот блок-контакт монтируется с левой стороны выключателя и сигнализирует отключение из-за повреждения. Иммитация повреждения:

□ на передней панели блоков-контактов ОF и SD расположена кнопка иммитации действия этих блоков-контактов, без включения выключателя.

Номинальный ток блоков-контактов

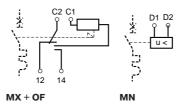
Напряжение (В)	(A)
~ 415	3
~ 240	6
= 130	1
= 48	2
= 24	6

■ присоединение:

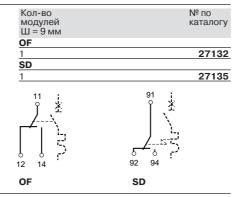
□ с помощью 2 кабелей сечением до 1,5 мм²;

□ с помощью 1 кабеля сечением до 2,5 мм².

Вспомогательные электрические устройства для C32H-DC


Возможные комбинации вспомогательных устройств

C32H-DC NW NW NW XW	ОF ил SE	시 ボ	OF или SD	C32H-DC	V i g i	1 -	F SD ии или D OF	C32H-DC	V i g i		OF или SD	C32H-DC	MX или MN		OF или SD	SD или OF	Ä	MX или MN	
---------------------------	----------------	--------	-----------------	---------	------------------	-----	------------------------	---------	------------------	--	-----------------	---------	-----------------	--	-----------------	-----------------	---	-----------------	--


MX + OF и MN

Кол-во модулей Ш = 9 мм	Напряжение	№ по каталогу
MX + OF		
2	220-415 В пер. тока	27136
	110-220 В пер. тока	
	110-125 В пост. тока	27137
	24-48 В пост. тока	27138
MN мгновенно	ого действия	
2	220-240 В пер. тока	27140
MNS свыдер	жкой времени 0,5 с	
2	220-240 В пер. тока	27143

OF, SD

Вспомогательные электрические устройства позволяют осуществлять дистанционное отключение (без модуля Vigi) и сигнализацию состояния недифференциальных автоматических выключателей C32H-DC.

Отключение

Расцепители MX + OF или MN монтируются с правой стороны от выключателя.

■ MX + OF

При подаче напряжения на обмотку независимого расцепителя происходит отключение выключателя:

□ выключатель оборудуется контактами (клеммы 12-14) для сигнализации состояний "Включено" и "Отключено".

■ MN

При падении напряжения в сети на 35 - 70% происходит отключение выключателя и блокировка его включения до восстановления номинального напряжения: □ соответствует нормам МЭК 947.2; □ применение

- подача команды на отключение кнопкой;
- предотвращение неконтролируемого пуска двигателя после восстановления напряжения.

■ MNS

При необходимости может управляться кнопкой; с выдержкой времени 0,5 с отстраивается от кратковременных посадок напряжения.

Потребляемая мощность катушки

Тип	Напряжение	
	(B)	(Bt, BA)
MX + OF	= и ~ 24-415	импульс 40 (6 мс)
MN	~ 220-240	удержание 0,6

■ OF

Этот блок-контакт монтируется с левой стороны выключателя и сигнализирует состояния "Включено" или "Отключено".

■ SD

Этот блок-контакт монтируется с левой стороны выключателя и сигнализирует отключение из-за повреждения.

■ присоединение: с помощью 2 кабелей сечением 1,5 мм² или 1 кабеля - 2,5 мм².

Номинальный ток блоков-контактов

Напряжение (В)	(A)
415 В пер. тока	3
240 В пер. тока	6
125 В пост. тока	1
48 В пост. тока	2
24 В пост. тока	6

Аксессуары для C60 и C120

Примечание: рукоятка монтируется только на двухтрех- и четырехполюсных аппаратах.

Рукоятка	№ по каталогу
передаточный механизм (монтируется на выключателе)	27046
разъемный фланец для рукоятки (монтируется на подвижной панели или дверце)	27047
стационарная рукоятка (монтируется на неподвижной передней или боковой панели)	27048

№ по

26996

Основание для установки

расстояние между осями рядов: 200 мм

втычных автоматов

каталогу (<= 63 A) Ручное управление с передней или с боковой панели (по выбору) C60/C120. Степень защиты IP 54.

■ установка:

□ на дверце или панели, перемещаемых вместе с разъемным фланцем рукоятки; □ на передней или боковой съемной панели щита.

- позволяет быстро заменить выключатель благодаря втычным контактам;
 - позволяет избежать случайного прикосновения к клеммам, находящимся под напряжением;
 - расстояние между осями рядов 200 мм;
 - присоединение:
 - через кабели сечением до 35 мм².

 Навесная блокировка
 № по каталогу

 С120 (ячейка для 4 полюсов)
 27145

 С60 (ячейка для 2 полюсов)
 26970

0 0	Фальш-модуль Ш = 9 мм	№ по каталогу 27062
	Запасные защелки к С60	
Killing 11	50 шт.	27052
Bir = 1)		

■ используется для:

□ выравнивания аппаратов в ряду; □ заполнения пустых мест в рядах; □ предохранения от контактов с клеммами и проводниками, в частности, при монтаже в открытом щите.

Защитные крышки винтов	№ по каталогу
С120 (ячейка для 10 полюсов)	27152
С60 (ячейка для 2 полюсов)	26981

■ позволяют избежать случайного прикосновения к клеммам, находящимся под напряжением.

Клеммные заглушки	№ по каталогу
для С60	
1 полюс	26975
2 полюса	26976
3 полюса	26975 и 26976
4 полюса	26978
для C120/NG125	
1 полюс без зажимов	27151
1 полюс с зажимами 50 мм ²	27153
•	

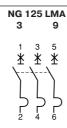
- используются для присоединения кабелей сечением до 50 мм² (С120);
- позволяют избежать контактов с клеммами и проводниками при монтаже в открытом щите.

Защита двигателей

	Кол-во модулей Ш = 9 мм		№ по каталогу	Ток откл. защиты (A)	
C 60 LI	MA				
3	6	1,6	26357	20	
	-	2,5	26358	30	
1 3		4	26359	50	
<u>,</u> * , *	<u>*</u>	6,3	26360	75	
11	\	10	26361	120	
1 1		12,5	26362	150	
Цι	<u> </u>	16	26368	190	
٦ ٦	ر ر	25	26369	300	
2 4	6	40	26370	480	

Применение

Управление и защита цепей питания электродвигателей (кабели и пускатели) от коротких замыканий. Обязательно дополнять данные аппараты соответствующим токовым реле.


Характеристики

- ном. ток: 1,6-80 А;
- температура: 40 °C;
- кривая отключения;

MA - срабатывание магнитной защиты при 12 ln \pm 20%;

■ Все остальные параметры аналогичны аппаратам С 60 L и NG 125 L соответственно.

4	18879	50	
6,3	18880	75	
10	18881	120	
12,5	18882	150	
16	18883	190	
25	18884	300	
40	18885	480	
63	18886	750	
80	18887	960	

Применение

Управление ручное и защита двигателей.

- изоляция цепей;
- ручное или дистанционное управление;
- защита от коротких замыканий;
- защита от перегрузки (регулируемая);
- защита от обрыва фазы;

Характеристики

- ном. ток: 0,16-25 A (регулируемый);
- напряжение Un=690 В;
- напряжение изоляции 690 B;
- напряжение импульсное 6 кВ;
- кривая отключения $-12ln \pm 20\%$ при коротком замыкании;
- отключающая способность по МЭК 947-2 (кА) не менее 15 кА при 415 В;
- электрическая износостойкость по AC 3 (в/о): 100000 циклов;
- Bec 260 r;
- Возможность присоединения дополнительных устройств;

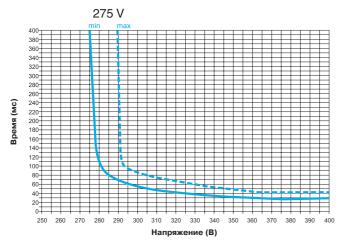
Автомат защиты

кл. ам. (A)
(400 B)

 Токоограничитель 100 кА, 415 В
 21115

 Шинка гребенчатая
 21144

Аксессуары к Р 25М


Тип	Кол-во модулей Ш = 9 мм	Напряжение	№ по каталогу
MX	2	220/240	21127
	2	380/415	21128
MN	2	220/240	21129
	2	380/415	21130
блок ко	нтакты		
O+F	1		21117
F+F	1		21116
F+SD.F	1		21118
O+SD.F	1		21119
F+SD.O	1	·	21120
O+SD.O	1		21121

Tm Мотор-редукторы для автоматических выключателей*

Кривая срабатывания расцепителя перенапряжения MSU

дения

■ области применения: системы отопления, освещения на лампах накаливания

Описание

ной команды;

Блоки Tm обеспечивают:

■ дистанционное управление автоматическими выключателями (с блоком Vigi или без него) при помощи фиксирован-

■ возврат автоматического выключателя в исходное положение после отключения, при соблюдении принципов безопасности и действующих правил, посредством рукоятки, с адаптацией других вспомогательных устройств выключателя.

■ управление электрическими командами фиксированного типа;

невысокой частотой включений.

или галогенных лампах, двигатели с

- отключающий выключатель, расположенный на передней панели, позволяет: □ дезактивировать дистанционное управление;
- □ блокировать управляемый автоматический выключатель в отключенном положении при помощи навесного замка (∆ 7 мм, на заказ);
- повторное включение после повреждения:

□ в ручном режиме, после поиска и устранения повреждения; □ блок-контакт SD (26927).

последовательно включенный в линию управления блока Тт, предотвращает автоматическое или дистанционное повторное включение;

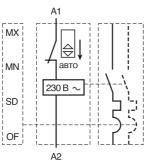
□ дистанционное повторное включение возможно при возврате в исходное положение путем размыкания цепи управления на время, превышающее 1,5 с;

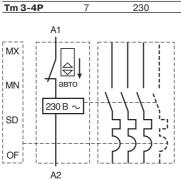
■вспомогательные устройства, устанавливаемые на мотор-редуктор простым защелкиванием, обеспечивают:

□ мгновенное отключение или отключение с выдержкой времени при минимальном напряжении: MN, MNs;

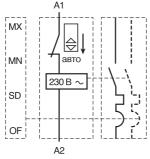
□ мгновенное отключение при подаче тока: MX+OF;

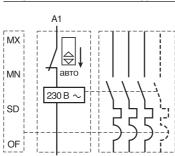
□ сигнализацию отключения на повреждение: SD;


□ сигнализацию отключенного или включенного положения автоматического выключателя: ОF,


- вспомогательные устройства, устанавливаемые на мотор-редуктор:

 □ управление импульсной и/или фиксированной командой: АСТс;
- □ выдержка времени: ATEt;
- автоматика повторного включения: ATm, ATm3 или ATm7.
- * Выбор выключателя зависит от Вашего проекта: C60, C120, DPN.


Тип/автоматический выключатель	C60 1-2P	3-4P	C120 2P
Tm (1-2P): 18310		-	-
Tm (3-4P): 18311	-		-
TmC120 (2P): 18312	-	-	
Tm (3-4P): 18311	- -	•	


Наименование	Кол-во модулей Ш = 9 мм	Напряжение пер. ток (B)	№ по каталогу
Tm 1-1P+N-2P	7	230	18310
TmC120 2P	7	230	18312

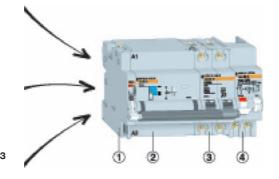

Характеристики

- напряжение цепи управления (Uc): 230 В пер. тока (-15% + 10 %); частота: 50-60 Гц;
- потребление:
- □ импульс:
- Tm: 28 BA;
- Tm120: 35 BA; □ постоянно: 2 BA;
- нечувствительность к кратко-
- временным отключениям: ≤ 0,45 с;
- реакция на исчезновение напряжения: \Box > 0,45 с, механическое размыкание
- полюсов;
- □ повторное включение через 2 с после восстановления напряжения;
- кол-во циклов (B-O) при AC1:
- □ Tm + автоматический выключатель (≤ 25 A): 20 000;
- □ Tm + автоматический выключатель (32-63 A): 10 000;
- \Box Tm + C120 (2 полюса): 10 00;
- □ время отключения при помощи Tm: 1 с;
- □ время включения при помощи Tm: 2 c;
- присоединение:
- □ проходные клеммы:
- -1 кабель сечением 6 мм²;
- -2 кабеля сечением 1,5 мм² или 2,5 мм²;
- масса:

18311

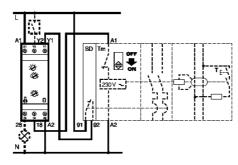
- □ 1-2 полюса: 300 г; □ 3-4 полюса: 310 г.

ATm, ATm3 и ATm7 Устройства автоматики повторного дистанционного включения для модульных мотор-приводов Тт, TmC120 и мотор-приводов MT Compact NS.



Применение

Устройства автоматики повторного включения ATm, ATm3 и ATm7 используются с модулями дистанционного управления для подачи сигнала на их включение после срабатывания аварийного расцепителя аппарата защиты. Параметры работы устанавливаются пользователем (количество включений на протяжении выбранного времени и временная задержка сброса). Эти функции необходимы для обеспечения работы систем с низким уровнем обслуживания и требующих высокого уровня работоспособности.


- 1. SD контакт сигнализации повреждения (обязательно)
- 2. Тт или МТ (для Compact NS) мотор-при-
- 3. автоматический выключатель
- 4. модуль Vigi
- ■Устройства автоматики повторного включения используются только совместно с контактом сигнализации повреждения SD, который выдает сигнал аварии для повторного включения в автоматическом режиме.
- ■Устройства автоматики повторного включения блокирует мотор-привод если авария не устранена.
- ■Ручное управление мотор-привода имеет приоритет перед устройством автоматики повторного включения.

ATm

Устройство автоматики повторного дистанционного включения для модульных мотор-редукторов Tm, TmC120.

ATm	Ш=9 мм 2	230	18316
Наименование	модулей	Напряжение Пер. (B)	№ по каталогу

Описание

Одноканальное устройство автоматики повторного включения ATm срабатывает в случае получения сигнала от дополнительного контакта сигнализации повреждения SD.

На передней панели под прозрачной крышкой расположены настройки, позволяющие установить:

- количество допустимых повторных включений (от 0 до 10) и режим остановки и сброса ATm (off/reset);
- потенциометр Т2 для установки максимального времени (от 12 до 120 минут) для предустановленного количества допустимых повторных включений;
- потенциометр Т1 для установки времени задержки (от 30 до 300 сек.) перед повторным включением;
- светодиодный индикатор (желтый), указывающий состояние ATm:

□выкл.: отсутствие питания либо режим off/reset;

□пульсирует: нормальная работа;

□мигает: процесс режима повторного включения;

□постоянное свечение: заблокирован Tm.

Возможно использование:

- входа для сигнала от дополнительного контакта сигнализации повреждения (SD):
- вход дистанционной задержки ATm (Y2) для подключения внешнего контакта (обеспечение блокировки при одном повреждении).
- выходной контакт для дистанционной сигнализации блокировки ATm.

Характеристики

- ■Напряжение цепи управления: 230 В АС, 50/60 Гц.
- НО выходной контакт: 230 B AC, 2 A max. (AC1).
- ■Время срабатывания: ≤10 мс.
- ■Потребление: 14 BA.
- ■Класс безопасности: 0.
- ■Присоединение туннельными клеммами:

 \square гибкий кабель: $2x1.5 \, \text{мм}^2$; \square жесткий кабель: $2x2.5 \, \text{мм}^2$.

■Степень защиты:

□IP50 для наружных частей корпуса; □IP20 для соединительных клемм.

- ■Масса: 66 г.
- ■Рабоча≤я температура: -5°C...+55°C.
- ■Температура хранения: -40°C...+70°C.
- ■Тропическое исполнение: степень T2 (влажность 95% при 55^{0} C).
- ■Стандарты: EN 60947-1, EN 60669-2.

ATm3 и ATm7

Устройство автоматики повторного дистанционного включения для модульных мотор-редукторов Тт, TmC120 и MT Compact NS

18316

18306

18307

Описание

Трехканальное ATm3 и семиканальное ATm7 устройства автоматики повторного включения срабатывает при получении сигнала об аварии от контакта SD как основного, или при различных аварийных режимах: термомагнитный расцепитель (контакт SD) и состояние изоляции (реле контроля сопротивления изоляции RH).

Эти устройства также позволяют осуществлять задержку включения после возобновления ОСНОВНОГО питания обеспечения последовательного повторного включения нескольких каналов.

Данные устройства имеют:

- ■LCD дисплей.
- ■Вход для сигнала от дополнительного контакта сигнализации повреждения (SD):

□ATm3: I1, I3, I5

□ ATm7: I1, I3, I5, I7, I8, I9, I10

■Вход для сигнала от реле контроля изоляции (RH) (опция):

□ATm3, ATm7: I2, I4, I6

- ■Вход дистанционной задержки (Y2) для подключения внешнего контакта.
- ■Выходной контакт для дистанционной сигнализации блокировки устройства.
- ■Вход дистанционного управления (Y3) (опция) для принудительного возврата устройства в рабочее состояние после его блокирования или сброса (в зависимости от программы).
- ■Выходные контакты дистанционного управления.
- ■Навигационные кнопки: +, -, ESC, OK.
- ■Две специальные кнопки: ON/OFF, для: □для включения и отключения ATm

□диагностика состояния каналов: количество и тип аварии

□доступ к счетчику аварий и временной задержки, установленные в меню

■Опции: EEPROM карта памяти (каталожный №18314) предназначена для хранения конфигурации устройства и позволяет ее копировать в другие устройства ATm3 и ATm7.

Характеристики

- ■Напряжение цепи управления: 230 В АС, 50/60 Гц.
- ■Выходные контакты: 250 В АС, 8 А (АС1): □ATm3: 3 NO (дистанционное управление)
- + 1 NO/NC (аварийная сигнализация)
- □ATm7: 7 NO (дистанционное управление)
- + 1 NO/NC (аварийная сигнализация) ■Время срабатывания: 10 мс.
- ■Потребление: 7 ВА.
- ■Класс безопасности:

□промышленный: 0

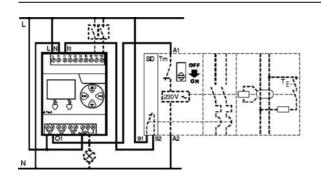
□жилищный: 2 (II).

■Присоединение туннельными клеммами для гибкого и жесткого кабеля:

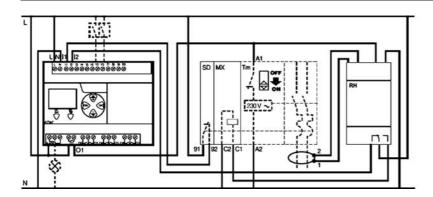
□2х1.5 мм2;

п2х2.5 мм2.

- ■Степень защиты:
- □ IP4/IPxxD для наружных частей корпуса;
- □IP2/IPxxВ для соединительных клемм.
- ■Macca:


□АТт3: 205 г

□ATm7: 325 г


- □картридж: 10 г.
- ■Рабочая температура: -50С...+550С.
- ■Температура хранения: -400С...+700С. ■Тропическое исполнение: степень T2
- (влажность 95% при 550С).
- ■Стандарты: EN 60947-1, EN 60730-1, EN

ATm3 и ATm7

Устройство автоматики повторного дистанционного включения для модульных мотор-редукторов Tm, TmC120 и MT Compact NS

Наименование		Напряжение Пер. (B)	№ по каталогу
ATm3	8	230	18306

И		18314
	и	и

Дифференциальная защита

Содержание	Страница
DPN N Vigi диф. автоматы	32
ID Y30	33
Вспомогательные	
устройства для ID	34
Vigi C60, дифференциальные	
модули	35
Vigi NG125, дифференциальные	
модули высокой чувствительност	и 36
Vigi NG125, дифференциальные	
модули средней чувствительност	и 37
Вспомогательные устройства	
для NG125 и модуля Vigi	38, 39

Таблица выбора

Чувстви-	Тип	Номинальн	ый ток (А)					
тельность		1	25	32	40	63	100	125
30 мА	ID				1			
	DPN N Vigi							
	Vigi C60 ≤ 25 A							
	Vigi C60 ≤ 63 A							
	Vigi NG125 ≤ 63 A							
	Vigi NG125 ≤ 125 A							
100 мА	ID							
300 мА	ID							
	Vigi C60 ≤ 25 A							
	Vigi C60 ≤ 63 A							
	Vigi NG125 ≤ 63 A							
	Vigi NG125 ≤ 125 A							
300 мА S	ID							
	Vigi C60 ≤ 25 A							
	Vigi C60 ≤ 63 A							
	Vigi NG125 ≤ 63 A							
	Vigi NG125 ≤ 125 A							

DPN N Vigi Дифференциальные

автоматические выключатели

30 мА мгновенного действия

6000 3 МЭК 1009 2-1 Класс АС , Класс А и Si

	Кол-во	Кол-во	Ном.		№ по катал	югу
	полю- сов	модулей Ш = 9 мм	TOK (A)	утечки (мА)	Кривая С	Кривая В
	1+N	4	6	30	19661	19651
			10	30	19663	19653
	N 1		16	30	19665	19655
	IN I		20	30	19666	19656
_	_	_	25	30	19667	19657
l	, ' , ' , *		32	30	19668	19658
l	<i>⊢-</i>	ᠽ _	40	30	19669	19659
1	1 1 1					

Класс АС

Класс А

Ном.		№ по каталогу
ток (A)	утечки (мА)	Кривая С
6	30	19771
10	30	19772
13	30	19773
16	30	19774
20	30	19775
25	30	19776
32	30	19777
40	30	19778
6	300	19781
10	300	19782
13	300	19783
16	300	19784
20	300	19785
25	300	19786
32	300	19787
40	300	19788

↑: фильтр помех сети

- Класс A защита от пульсирующих токов утечки
- Класс Si сверхзащита от помех из сети

Применение

Автоматический, дифференциальный выключатель-моноблок DPN N Vigi позволяет реализовать:

- комплексную защиту цепей от коротких замыканий, перегрузок и повреждений изоляции;
- защиту людей от поражения электрическим током при прямых (30 мА) контактах с токопроводящими частями;
- защиту электроустановки от риска возникновения пожара;
- селективность защит при каскадном соединении аппаратов на токи утечки 30 мА и 300 мА.

Характеристики

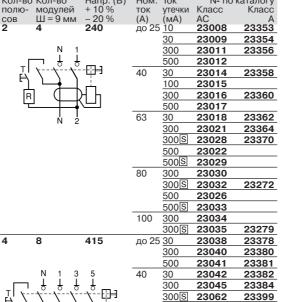
- ном. ток: 6-40 А при 30 °C;
- ном. напряжение:
- 230 В пер. тока;
- ток отключения:
- □ MЭK 1009: 6000 A;
- мгновенное замыкание; ■ калиматра инитар (В (О)
- количество циклов (B/O):
- □ механических: 20000;

□ электрических: при 16 A - 20000; 20 A - 15000; 25-40 A - 10000;

- присоединение: через зажимы для кабеля сечением до 16 мм²;
- тропическое исполнение: степень T2 (относительная влажность 95 % при 55 °C);

■ масса: 190 г.

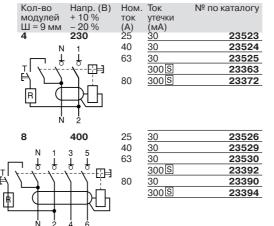
Дифференциальные выключатели нагрузки


Класс AC \sim **M**3K 1008

Стандартная защита от помех сети Напр. (B) Ном. Ток + 10 % ток утеч Кол-во Кол-во

Класс

Класс



				200	23033	
			100	300	23034	
				300S	23035	23279
ļ	8	415	до 25	30	23038	23378
				300	23040	23380
				500	23041	23381
	Ņ 1 3		40	30	23042	23382
	<u> </u>	, , ,		300	23045	23384
ا کے 1 کے	-444	·/		300 S	23062	23399
	\rightarrow			500	23046	23385
₩.	(ΗЬ		500S	23063	23400
Щ_	\rightarrow		63	30	23047	23386
	N 2 4	 		300	23049	23388
				300S	23066	23402
				500	23051	23389
				500S	23067	23403
			80	300	23054	
				300S	23069	23284
				500S	23070	
			100	300	23056	-
				300S	23059	23294

Si защита от помех сети

: фильтр помех сети

ID мгновенного действия

Функции и применение

Дифференциальный выключатель нагрузки позволяет отключать цепь (вручную и автоматически) в случае повреждения изоляции между фазой и землей, когда ток утечки более или равен 10, 30, 300, 500 мА.

- применяется в распределительных сетях административных и промышлен-
- отстраивается от кратковременных, неустойчивых, случайных перенапряжений (пробой из-за пыли, коммутационные перенапряжения, грозовые разряды и т.д.) и работы высокочастотного оборудования;
- уровень чувствительности: импульс 250 А - фронт/длина 8/20 µс.

ID селективный S

- позволяет выполнить селективную цепь с отходящими линиями с дифференциальными выключателями нагрузки на 10 или 30 мА;
- нечувствителен к кратковременным перенапряжениям (пробой из-за пыли, коммутационные перенапряжения. грозовые разряды и т.д.);
- уровень чувствительности: импульс 5000 A.

Характеристики:

- рабочие температуры: -5 °C +40 °C;
- сигнализация аварийного отключения механическим индикатором на передней панели аппарата:
- комплектация: независимый расцепитель МХ, расцепитель минимального напряжения MN, сигнальный блок-контакт OF;
- однозначная индикация состояния "отключено";
- повышенная стойкость к короткому замыканию:
- количество циклов (B/O): 20 000;
- тропическое исполнение: степень Т2 (относительная влажность 95 % при 55 °С);
- присоединение:

при помощи гибкого кабеля сечением до 35 MM²:

■ соответствует нормам МЭК 1008;

■ масса (г):

-			
Кол-во полюсов	2	4	
	230	450	

Характеристики Si:

- уровень чувствительности импульс 3000 А – фронт 8/20 мкс;
- рабочие температуры: -25 °C +40 °C;

Вспомогательные устройства для ID

OF Блокконтакт состояния

Независимый расцепитель

Расцепитель минимального напряжения

OFS Блок-контакт


ID Дифференциальный выключатель нагрузки

№ по каталогу

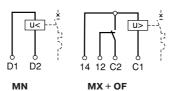
26923

26924

Возможные комбинации вспомогательных устройств

Блок-контакт OFS обязательно устанавливается вместе с вспомогательными устройствами

OF - с левой стороны для MN и MX



MN. MX + OF

Тип	Кол-во модулей	Напряжение (B)	№ по ката-
	Ш = 9 мм		логу
MN	2	220-240 В пер. тока	26960
MNS	4	220-240 В пер. тока	26963
MX	2	220-415 В пер. тока	
+ OF		110-130 В пост. тока	26946
		48-130 В пер. тока	
		48 В пост. тока	26947
		24 В пер. или пост. тока	26948

Аксессуары

Для ID		
клеммные заглушки	2 полюса	26976
	4 полюса	26978
защитные		
крышки винтов	2 полюса	26981
навесная зажимная бл	окировка	26970

Применение

Вспомогательные устройства обеспечивают отключение или сигнализацию состояния дифференциальных выключателей нагрузки. Они монтируются слева от аппарата в 54-мм зоне. Применение вспомогательного . контакта OFS обязательно для реализации функций MN, MX, SD или OF.

Дистанционное отключение дифференциального выключателя

Реализуется при помощи расцепителей MX или MN, которые монтируются с левой стороны вспомогательного контакта OFS.

■ MX + OF

□ при подаче напряжения на катушку расцепителя отключает ID;

□ контакт самоподрыва;

□ контакт состояний «Вкл.» и «Откл.».

■ MN

При падении напряжения в сети до 35-70%:

□ отключает выключатель;

□ блокирует включение выключателя до восстановления номинальной величины напряжения;

□ соответствует нормам МЭК 947.2;

□ применяется:

- для подачи команды на отключение

- для предотвращения неконтролируемого пуска двигателя после восстановления напряжения;

□ предохраняет от кратковременных посадок напряжения с выдержкой времени 0,5 с.

Номинальный ток блоков-контактов

Напряжение	ток(А)
415 В пер. тока	3
240 В пер. тока	6
130 В пост. тока	1
48 В пост. тока	2
24 В пост. тока	6
24 В пост. тока	6

Потребляемая мощность катушки

Тип	Напряжение (В)	(B	т, ВА)
MX	415 В пер. тока	импульс	120
	220-240 В пер. тока	импульс	50
	110-130 В пер. тока	импульс	200
	110-130 В пост. тока	импульс	10
	48 В пер. и пост. тока	импульс	22
	24 В пер. и пост. тока	импульс	120
MN	220-240 В пост. тока	удержание	4,1

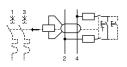
Сигнализация состояния дифференциального выключателя нагрузки

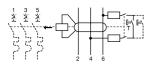
■ вспомогательные блоки-контакты OFS и OF позволяют осуществлять сигнализацию или управление, связанное с состоянием «Вкл.» или

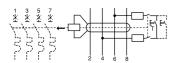
«Откл.» аппарата;

■ блок-контакт SD позволяет осуществлять сигнализацию или управление в связи с аварийным отключением из-за повреждения.

Vigi C60 и C120 Дифференциальные модули






C60N Автоматический выключатель

Vigi C60 Дифференциальный модуль

2 полюса

Тип	Кол-во полю- сов	Напряж. (B)	Кол-во модулей Ш = 9 мм		. № по кат.
Vigi C6	0				
до 25 А	12	127 3	3	30	26502
				300	26503
	2	220-415	3	30	26581
				300	26583
	3	220-415	6	30	26588
				300	26590
	4	220-415	6	30	26595
				300	26597
до 63 А	1 2	127	4	30	26506
				300	26507
	2	220-415	4	30	26611
				300	26613
				300S	26616
	3	220-415	7	30	26620
				300	26622
				300 S	26631
	4	220-415	7	30	26643
				300	26645
Vigi C1	20			300 S	26648
до 125	A 4	220-415	9	30	18569
				300	18570
				300 S	18548

: фильтр помех сети

Si сверхустойчивость к помехам сети

Применение

Осуществляет мгновенную дифференциальную защиту.

Работает без дополнительного источника питания. Дополняет двух-, трех- и четырехполюсные автоматические выключатели С60 и изготавливается в трех исполнениях:

■ на номинальные токи

□ до 25 А, □ до 63 А, □ до 125 А.

Блок Vigi C60 и автоматический выключатель С60 соответствует требованиям МЭК 947.2. . Комбинация из

С60 и Vigi С60 применяется:

- для защиты от непрямых контактов с токоведущими частями (30, 300 мА);
- для защиты от прямых контактов с токоведущими частями;
- для защиты от повреждения изоляции и возникновения пожара.

Вес автоматического выключателя с модулем Vigi C60 (г)

Кол-во полюсов	C60 (<=25 A)	С60 (40 и 63 А)
2	220 + 120	220 + 150
3	340 + 180	240 + 110
4	450 + 190	450 + 220

Кол-во модулей Ш = 9 мм для C60 с модулем Vigi C60

Кол-во	,		С60 (40 и 63 А)
полюсов	(MA)	(≤ 25 A)	
2	30 - 300	7	8
3	30 - 300	12	13
4	30 - 300	14	15

Характеристики

■ ном. напряжение:

□ от 240 В до 415 В пер. тока ±(10-20)%; □ от 130 В до 240 В пер. тока <u>+</u>(10-20)%;

- частота 50 Гц;
- мгновенный расцепитель: чувствительность 30 и 300 мА для всех ном. токов;
- индикация аварийного отключения красная полоса на ручке управления;
- модуль отстроен от кратковременных, неустойчивых перенапряжений и утечек, а так же может работать с высокочастотным оборудованием.

Присоединение

■ через зажимы для кабеля сечением до 25 мм² при ном. токе 25 A и 35 мм² при ном. токе 32 - 63 А.

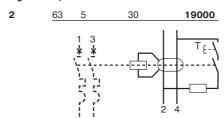
Модули снабжены установочным ключом во избежание ошибочного присоединения с Vigi C60 на 25 А.

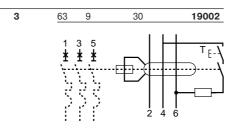
Конструкция модулей Vigi позволяет различать природу защитного отключения (термоэлектрическая или дифференциальная).

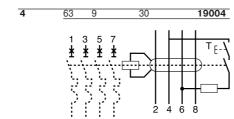
Селективный модуль Vigi C60 S

■ позволяет выполнить селективность для всех аппаратов с сочетанием чувствительности: □ 300 мА (С 30 мА; □ 1AS с 30 и 300 мA.

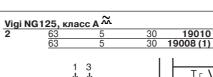
Аксессуары

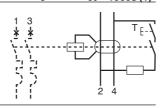

Тип	№ по каталогу
защитные крышки винтов (20 шт.)	26982

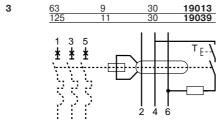

30 мА мгн. МЭК 60947.2

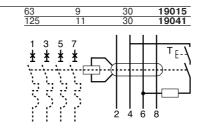

Vigi NG125 Дифференциальные модули высокой чувствительности

Кол-во Ном. Кол-во Чувстви- № по полюсов ток модулей тельность каталогу (A) Ш = 9 мм (мА)


Vigi NG125, класс AC ~







(1) Номинальное напряжение: от 110 до 220 В пер. тока.

Применение

Электромеханический дифференциальный модуль Vigi NG 125 обеспечивает дополнительную защиту людей от прямых контактов с токоведущими частями. Функционирует без дополнительного

Функционирует без дополнительного источника питания. Дополняет автоматические выключатели NG125.

Характеристики

- при наличии аппаратов, содержащих выпрямительные устройства (диоды, тиристоры, триаки), используется мгновенный дифференциальный выключатель класса А, гарантирующий отключение при наличии постоянной составляющей:
- модуль включает в себя:
- □ дифференциальное реле;
- □ тор;
- присоединение к автоматическому выключателю через жесткие соединения с защитной крышкой (степень защиты IP40D):
- индикация аварийного отключения красная полоса на рукоятке управления;
- ном. напряжение: 230-415 В пер. тока;
- частота: 50-60 Гц;
- ном. импульсное напряжение: 8 кВ;
- напряжение изоляции: 690 В;
- стойкость к импульсному напряжению 8/20 мкс: 3 кA;
- модуль отстроен от кратковременных неустойчивых перенапряжений;
- ном. ток : 63 A или 125 A;
- вспомогательные устройства для Vigi 125 A:

□ MXV - независимый расцепитель;
 □ SDV - контакт сигнализации
 повреждения:

■ масса (г):

Кол-во	2	3	4
полюсов			
5 модулей	250	-	-
9 модулей	-	410	450
11 модулей	_	750	800

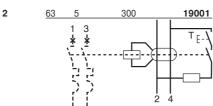
■ присоединение:

□ ном. ток < 63 А:

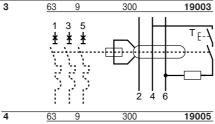
через зажимы для медного кабеля сечением от 1,5 до $50~\text{km}^2$;

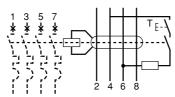
□ ном. ток от 80 до 125 А:

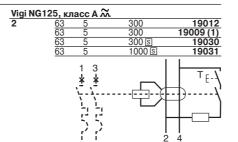
через зажимы для медного кабеля сечением от 16 до 70 мм²;

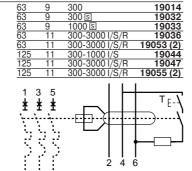

□ с помощью алюминиевого, медного кабеля с наконечником

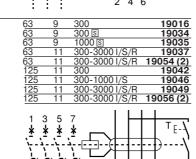
(см. "Аксессуары для присоединения").


Vigi NG125 Дифференциальные модули средней чувствительности









3

6

(1) Ном. напряжение: 110 - 220 В пер. тока. (2) Ном. напряжение: 440/500 В, без функции

Применение

Электромеханический дифференциальный модуль Vigi NG 125 дополняет автоматические выключатели NG 125 и обеспечивает:

- защиту людей от косвенных контактов с электрическим током;
- защиту электроустановок от повреждений изоляции.

Селективность достигается при наличии следующих условий:

- отклонение чувствительности на 1 пункт;
- отклонение выдержки времени на 1 пункт. Автоматические выключатели сохраняют свои харатеристики.

Общие характеристики

- при наличии аппаратов с выпрямителями (диодами, тиристорами, триаками) используется мгновенный расцепитель класса А, гарантирующий отключение при наличии постоянной составляющей:
- модуль включает в себя:
- □ дифференциальное реле;
- присоединение к автоматическому выключателю через жесткие соединения с защитной крышкой;
- индикация аварийного повреждения красная полоса на рукоятке управления;
- ном. напряжение: 230-415 В пер. тока;
- ном. импульсное напряжение: 8 кВ;
- напряжение изоляции: 690 В;
- стойкость к импульсному напряжению 8/20 мкс:
- □ регулируемый модуль: 5 кА;
- □ мгновенный модуль: 3 кА;
- модуль отстроен от кратковременных неустойчивых перенапряжений;
- ном. ток: 63 или 125 A.

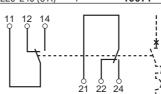
Особые характеристики регулируемых Vigi

- регулируемая чувствительность ном. тока: 300, 500, 1000, 3000 мА;
- время регулируемого отключения:
- □ мгновенно;
- □ избирательно: 60 мс;
- □ с выдержкой времени: 150 мс;
- сигнализация тока утечки:
- □ на передней панели посредством светового индикатора:
- □ дистанционно с помощью замыкающего контакта;
- вспомогательные устройства с контактными штырями на регулируемом Vigi 125 A и 63 A:
- □ MXV независимый расцепитель;
- □ SDV контакт сигнализации повреждения;

■ Macca (1):				
Кол-во	2	3	4	
полюсов				
5 модулей	250	_	-	
9 модулей	-	410	450	
11 модулей	_	750	800	

Вспомогательные устройства для NG125 и модуля Vigi

Vigi NG125

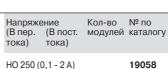

Вспомогательные устройства

2 OF+OF 2 OF+SD MN MX MNS MNX ства

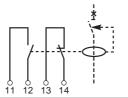
NG125 Автоматический выключатель


OF + OF Блокконтакт состояния

Напряжение (В пер. тока) № по каталогу Ш=9 мм № 220-240 (6 A) 1 19071



OF + SD Блок-контакт сигнализации повреждения



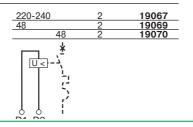
SDV Контакт сигнализации повреждения

19059

19064

230-415 110-130 2

H3 250 (0,1 - 2 A)



MX + OF Независимый расцепитель и блок-контакт

48-130	48	2	19065
24	24 12	2	19066
48-130 24 12	12	2	19065 19066 19063
_		*	
l T		, <u>,</u> , –	
'ـد ا	U,>	} \	
111		<u>L</u> ,	
111		,	
		-	
		r'	
\perp	Ţ	!	
0 0 0			
1412 C2	C1		

ми Расцепитель минимального напряжеия мгновенного действия

Применение

Вспомогательные электрические устройства обеспечивают сигнализацию и дистанционное отключение аппарата NG125 или блока Vigi . Монтируются слева от автоматического выключателя.

Общие характеристики

■ соответствует нормам:

 \square M \ni K 6094 $\stackrel{\circ}{7}$.5.1 ($\stackrel{\circ}{M}$ X + OF, OF + SD, OF + OF μ SDV);

□ MЭK 60947.2 (MN, Mn⑤, MX и MXV

■ коммутационная износостойкость:

10 000 циклов (АС 15):

□ напряжение изоляции Ui: изоляция класс 2: 690 В;

□ стойкость к импульсному напряжению: 8 кВ;

□ степень загрязнения: 3;

■присоединение:

□ через зажимы для 1 или 2 гибких и жестких кабелей сечением 2,5 мм²;

□ через зажимы для кабелей

с 2 наконечниками сечением 2,5 мм²;

□ через зажимы для кабелей

с 2 наконечниками сечением 1,5 мм².

OF+SD, OF+OF, SDV

Дистанционная сигнализация:

■ состояния автоматического выключателя "Разомкнуто" или "Замкнуто";

■ повреждения автоматического выключателя (SD) или блока Vigi (SDV).

Предварительное извещение об аварийном отключении

■ осуществляется посредством световой сигнализации и вспомогательного контакта;

■ указывает на появление тока утечки, позволяя пользователю вмешаться до отключения;

■ порог предварительной сигнализации регулируется на передней панели блока Vioi.

MX+OF

■ независимый расцепитель;

■ отключение: с момента включения под напряжение;

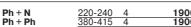
■ снабжен контактом для автоматического отключения.

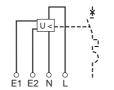
MN

■ расцепитель минимального напряжения;

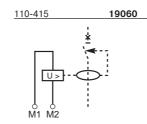
■ включение и отключение взаимодействующего автоматического выключателя, если напряжение понижается с 70 % до 35 %;

■ блокирует повторное включение, если напряжение питания не восстановлено (пример: срочное отключение кнопкой).




MN © Расцепитель минимального напряжения с выдержкой времени

Тип	Напря- жение пер. ток (В)		№ по каталогу
	230-240	4	19068
			3


MN⊠ Расцепитель минимального напряжения, нечувствительный к отключению

Независимый расцепитель

19088

19088

MNS

- расцепитель минимального напряжения с выдержкой времени;
- обеспечивает выдержку времени 0,25 с при кратковременном отключении или падении напряжения.

Характеристики вспомогательных устройств для блока Vigi

- ■Применяются с:
- □ блоком Vigi 125 A всех типов;
- □ блоком Vigi 63 A 300-3000 I/S/R.

MNX

■ расцепитель минимального напряжения, нечувствительный к отключению питания.

MXV

- независимый расцепитель;
- отключение: с момента включения под напряжение;
- снабжен контактом автоматического отключения;
- стойкость к импульсному напряжению: 6 κB;
- входное полное сопротивление: необходимо применять АСТр, если ток утечки больше 1 мА.

Контроль и управление

Содержание	Страница
SBI, комбинированные	42
разъединители-предохранители	
РЕ, стационарные ограничители	4.0
перенапряжений	43
PRD, ограничители перенапряжений	46
СО СМЕННЫМ КАРТРИДЖЕМ	
PRC, ограничители перенапряжений для слаботочных цепей	49
TL,TLI, импульсные реле	50
TLc, TLm, TLs, импульсные реле со	
встроенными вспомогательными функциями	51
ATEt, ATLz, ATLc+c, ATLc+c, ATL4,	
вспомогательные устройства	52
СТ, контакторы	53
Вспомогательные устройства для СТ	55
I, выключатели нагрузки ВР, кнопки	58
V, световые индикаторы	
Переключатели СМ	59
IH, электромеханическое реле времени	60
ІНР, программируемое реле времени	62
ITM Ikeos, многофункциональное реле	
времени	64
CDS, реле отключения неприоритетной нагру:	зки 65
TV, диммеры	66
MIN, MINe, MINs, MINp, регуляторы выдержки	
времени PRE, устройство предупреждения	70
об отключении освещения	
IC 50,IC 200,IC 2000, сумеречные	72
выключатели	1 2
IC 2000 P+, сумеречный выключатель	73
RCC, RCU, RCI, RCP, реле контроля и защиты	75
VLT, AMP, CMV, CMA, щитовые приборы и	76
приборы на DIN рейку	
РМ9, мультиметр	77
ME/MEr, счетчики активной электроэнергии	78
СІ, счетчики импульсов	79
СН, счетчик моторчасов	79
TI, трансформаторы тока	80
Розетки на DIN рейку	83
TR, трансформаторы напряжения	84
SO, SR, звонки и зуммеры	85
Адаптеры для кнопок XB4, XB5, XB7	85
Multi 9, принтер	86

Комбинированные разъединители-предохранители

MGN15707

MGN15712

MGN15708

MGN15718

Применение

- ■обеспечивают защиту цепей от перегрузок и коротких замыканий
- ■применяются на промышленных объектах, где требуется высокая отключающая способность аппаратов защиты
- ■выполняют функции изолятора и не могут использоваться как выключатель цепи под нагрузкой
- ■оборудованы световым индикатором срабатывания патрона предохранителя
- \blacksquare может применяться с патронами предохранителя типа aM и gG.

Основным назначением предохранителей типа gG является защита от токов перегрузки и короткого замыкания. Предохранители типа аМ обеспечивают только защиту от токов короткого замыкания и применяются с нагрузками, имеющими высокие пусковые токи (электродвигатели, первичные обмотки трансформаторов и т. д.)

Характеристики

- ■соответствуют стандарту:IEC EN 609473
- ■частота: 50 Гц
- ■напряжение изоляции: 690 В
- ■сигнализация срабатывания: включением светового индикатора (неоновый)
- ■присоединение туннельными клеммами:

□до 25 мм2 для разъединителей с патроном 14x51

□до 35 мм2 для разъединителей с патроном 22x58

■характеристики патронов предохранителей:

Тип патрона предохранителя		Ith (A)	Pmax (Вт)
14 x 51	аМ	50	5
14 X 3 I	gG	40	3
22 x 58	аМ	100	9,5
22 X 30	gG	80	9,5

Ртах: максимальная рассеиваемая мощность

- ■категория применения: AC20B (разъединение цепи без нагрузки)
- ■рабочая температура: -20 °С...+60 °С
- ■температура хранения: -40 °C...+80 °C

Патроны пр	едохранит	елей					SBI разъедин	ители				
Тип	Ток	Напр	Toκ K3 (Isc)(KA)	№ по ката	логу						
	(A)	(B)	аМ	gG	аМ	gG	N	1P	1P+N	2P	3P	3P+N
No. 16							Ţ		N 1 1 2		1 3 5	N 1 3 5 L L L L L L L L L L L L L L L L L L L
	10	690	-	80	-	15787						
	16	690	_	80	_	15788	_ _ MGN15708	MGN15707	MGN15709	MGN15710	MGN15711	MGN15712
14x51	25	690	120	-	15762	-						
14X51	32	500	120	120	15763	15791	3 мод.	3 мод.	6 мод.	6 мод.	9 мод.	12 мод.
	40	500	120	120	15764	15792	по9 мм	по9 мм	по9 мм	по9 мм	по9 мм	по9 мм
	50	400	120	-	15765	-						
	32	690			-	15794						
	40	690			15751	15795	_ _ MGN15714	MGN15713	MGN15715	MGN15716	MGN15717	MGN15718
20,450	50	690			15752	15796						
22x58	63	690			15753	15797	4 мод.	4 мод.	8 мод.	8 мод.	12 мод.	16 мод.
	80	690			15754	15798	по9 мм	по9 мм	по9 мм	по9 мм	по9 мм	по9 мм
	100	500			15755	_	_					

PF Стационарные ограничители перенапряжений

(класс 2 или 3)

15592

15696

Наимено- вание	Кол-во полюсов	Ширина в9 мм модулях	№ по кат.
PF65			
PF65 1P	1P	2	15683
PF65 1P+N	1P+N		15684
PF652P	2P	4 -	15584
PF653P	3P		15581
PF65r3P+N	3P+N	-	15685
PF653P+N	3P+N	8 -	15586
PF654P	4P	-	15585
PF40	71		10000
PF40 1P	1P	2	15686
PF40 1P+N	1P+N		15687
PF40 2P	2P	4	15587
PF403P	3P		15582
PF40r 3P+N	3P+N	-	15690
PF403P+N	3P+N	8	15688
PF40r4P	4P		15590
PF40 4P	4P	-	15588
PF20			
PF20 1P	1P	2	15691
PF20 1P+N	1P+N		15692
PF20 2P	2P	4 -	15592
PF203P	3P		15597
PF203P+N	3P+N	8	15693
PF20 4P	4P	-	15593
PF8 класс 2	2/класс 3		
PF8 1P	1P	2	15694
PF8 1P+N	1P+N	4 -	15695
PF82P	2P	4	15595
PF83P	3P		15598
PF83P+N	3P+N	8	15696
PF84P	4P	-	15596

Применение

Ограничители перенапряжений РF предназначены для работы в системах заземления типа TT, TN-S и TN-C.

Ограничители перенапряжений класса 2 тестируются при волне импульса 8/20 мкс, класса 3 – при волне импульса 12/50 мкс и 8/20 мкс.

PF65r и PF40r имеют индикатор, позволяющий дистанционно передавать информацию об окончании ресурса работы ограничителя перенапряжений.

Каждый ограничитель перенапряжений данной серии имеет специфическое применение:

■защита ввода (класс 2):

□ PF65r/ PF65 рекомендуется для объектов с очень высоким уровнем риска (открытая местность);

□PF40r/PF40 рекомендуется для объектов с высоким уровнем риска;

□PF20 рекомендуется для объектов с низким уровнем риска;

■вторичная защита (класс 2 или 3):

□PF8 обеспечивают вторичную защиту нагрузок в каскадных системах защиты с ограничителями перенапряжения на вводе.

Применение данного ограничителя перенапряжений требуется в случае размещения защищаемого электроприемника на расстоянии более 30 м от ограничителя перенапряжения на вводе.

Общие характеристики

- ■Частота: 50/60 Гц.
- ■Максимальный ток утечки <200 мкA.
- ■Индикатор состояния с помощью зеленого/красного механического индикатора:

□зеленый: нормальная работа

□красный: необходима срочная замена ограничителя перенапряжений

- защита от токов короткого замыкания посредством автоматического выключателя.
- ■Время срабатывания: <25 нс
- ■Контакт дистанционной сигнализации (PF65r/PF40r):

□нормально закрытый

□присоединение посредством туннельных клемм 2x2,5 мм.

■Присоединение с помощью туннельных клемм:

□кабель: 2,5...35 мм

- ■Рабочая температура: -25 C... +60 C
- ■Температура хранения: -40 C... +70 C
- ■Степень защиты:

□IP20 для зажимов

□ІР40 для передней панели

■Стандарты:

□EN61643-11 и IEC61643-1 тип 2

PF Стационарные ограничители перенапряжений (класс 2 или 3)

56			-					
		Cen	ТЬ			Система	Наименование	Защитный аппар
1P+N	3P+N	1P	2P	3P	4P	заземления	паименование	Защитный аппар
		15683				TTиTN	PF65 1P	50A
15684						TTиTN-S	PF65 1P+N	кривая С
			15584			TN	PF652P	
				15581		TN-C	PF653P	-
	15685					TTиTN-S	PF65r3P+N	-
	15586					TTиTN-S	PF653P+N	-
					15585	TN-S	PF65r4P	
		15686				TT и TN	PF40 1P	40A
15687		.0000				TT n TN-S	PF40 1P+N	- кривая С
10007			15587			TN	PF40 2P	-
			10001	15582		TN-C	PF403P	-
	15690					TTиTN-S	PF40r3P+N	_
	15688					TTиTN-S	PF403P+N	-
					15590	TN-S	PF40r4P	-
					15588	TN-S	PF404P	-
		15691				TTиTN	PF20 1P	25A
15692		10031				TT n TN-S	PF20 1P+N	- кривая C
10032			15592			TN	PF20 2P	-
			10002	15597		TN-C	PF203P	-
	15693					TT n TN-S	PF203P+N	-
					15593	TN-S	PF204P	-
		15694				TTиTN	PF20 1P	20A
15695		10004				TT и TN-S	PF20 1P+N	- кривая C
			15595			TN	PF20 2P	
				15598		TN-C	PF203P	-
	15696					TTиTN-S	PF203P+N	-
					15596	TN-S	PF204P	-

PF Стационарные ограничители перенапряжений (класс 2 или 3)

Наимено-	Кол-во	Ширина в9 мм	Макс. разряд-	Номин. Разряд		овень огрниче апряжения, Up		_ Напр. сети, _		Максимально ее напряжени		_ №по
вание	полюсов	модулях	ный ток, lmax (кА)	ный ток, In(кА)	С	М	DM	Un(B)	C	M	DM	кат.
					L/PE	N/PE	L/N		L/PE	N/PE	L/N	
PF65												
PF65 1P	1P	2		_	≤1,5	-	-		340	-	-	15683
PF65 1P+N	1P+N	4			-	≤1,5	≤1,5	230	-	260	340	15684
PF652P	2P	4		_	≤1,5	≤1,5	-		340	340	-	15584
PF653P	3P		65	20	≤1,5	-	-		340	-	-	15581
PF65r3P+N	3P+N	8			-	≤1,5	≤1,5	- 230/400 -	-	260	340	15685
PF653P+N	3P+N	8		_	-	≤1,5	≤1,5	- 230/400 -	-	260	340	15586
PF654P	4P			_	≤1,5	≤1,5	-		340	340	-	15585
PF40												
PF40 1P	1P	2			≤1,5	-	-		340	-	-	15686
PF40 1P+N	1P+N	4		_	-	≤1,5	≤1,5	230	-	260	340	15687
PF40 2P	2P	4		_	≤1,5	≤1,5	-		340	340	-	15587
PF403P	3P		40	15 -	≤1,5	-	-		340	-	-	15582
PF40r3P+N	3P+N		40	15 -	-	≤1,5	≤1,5		-	260	340	15690
PF403P+N	3P+N	8		_	-	≤1,5	≤1,5	230/400	-	260	340	15688
PF40r4P	4P			=	≤1,5	≤1,5	-		340	340	-	15590
PF404P	4P			_	≤1,5	≤1,5	-		340	340	-	15588
PF20												
PF20 1P	1P	2			≤1,1	-	-		340	-	-	15691
PF20 1P+N	1P+N			_	-	≤1,5	≤1,1	230	-	260	340	15692
PF20 2P	2P	4	00	_	≤1,1	≤1,1	-		340	340	-	15592
PF203P	3P		20	5 -	≤1,1	-	-		340	-	-	15597
PF203P+N	3P+N	8		_	-	≤1,5	≤1,1	230/400	-	260	340	15693
PF204P	4P			-	≤1,1	≤1,1	-	- ′ -	340	340	-	15593
PF8 класс 2	2/класс 3											
PF8 1P	1P	2			≤1/≤1,1	-	-		340	-	-	15694
PF8 1P+N	1P+N		•	-	-	≤1,5/≤1,2	≤1/≤1,1	230	-	260	340	15695
PF8 2P	2P	4		-	≤1/≤1,1	≤1/≤1,1	-		340	340	-	15595
PF83P	3P		8	2,5 -	≤1/≤1,1	-	-		340	-	-	15598
PF83P+N	3P+N	8		-	-	≤1,5/≤1,2	≤1/≤1,1	230/400	-	260	340	15696
PF84P	4P			-	≤1/≤1,2	≤1/≤1,2	-	_	340	340	-	15596

СМ: общий режим (фаза – земля и нейтраль – земля). DM: дифференциальный режим (фаза – нейтраль).

PRD

Ограничители перенапряжений со сменным картриджем (класс 2 или 3)

16557

16559

16691

Наимено- вание	Кол-во полюсов	Ширина в9 мм модулях	№ по кат.
PRD65			
PRD65r 1P IT	1P	0	16555
PRD65r 1P	1P	2 -	16556
PRD65r 1P+N	1P+N		16557
PRD65r 2P	2P	4 -	16442
PRD65r3PIT	3P		16558
PRD65r3P	3P	6 -	16443
PRD65r3P+N	3P+N		16559
PRD65r4P	4P	8 -	16659
PRD40			
PRD40r 1P	1P	-	16561
PRD40 1P	1P	2 -	16566
PRD40r 1P+N	1P+N		16562
PRD40 1P+N	1P+N	4	16567
PRD40r2P	2P	4 -	16444
PRD402P	2P	-	16667
PRD40r3P	3P		16445
PRD403P	3P	6	16568
PRD40r3PIT	3P	-	16563
PRD40r 3P+N	3P+N		16564
PRD403P+N	3P+N	-	16569
PRD40r4PIT	4P	8	16597
PRD40r4P	4P	-	16664
PRD404P	4P	-	16669
PRD20			
PRD20 1P	1P	2	16571
PRD20r 1P+N	1P+N		16672
PRD20 1P+N	1P+N	4	16572
PRD20 2P	2P	-	16446
PRD203P	3P		16447
PRD20r3PIT	3P	6 -	16573
PRD20r3P+N	3P+N		16674
PRD203P+N	3P+N	-	16574
PRD20r4PIT	4P	8 -	16599
PRD20 4P	4P		16673
PRD класс 2/	класс 3		
PRD8 1P	1P	2	16576
PRD8r 1P+N	1P+N		16677
PRD8 1P+N	1P+N	4	16577
PRD82P	2P		16448
PRD83P	3P	6	16449
PRD8r3PIT	3P	6 -	16578
PRD8r3P+N	3P+N		16679
PRD83P+N	3P+N		16579
PRD8r 4P IT	4P	8 -	16678
PRD84P	4P	-	16680

Применение

Ограничители перенапряжений класса 2 тестируются при волне импульса 8/20 мкс, класса 3 – при волне импульса 12/50 мкс и 8/20 мкс.

Ограничители перенапряжений PRD позволяют заменять отработавшие ресурс картриджи. PRD65r, PF40r, PRD20r и PRD8r имеют индикатор, позволяющий дистанционно передавать информацию об окончании ресурса работы картриджа ограничителя перенапряжений.

Каждый ограничитель перенапряжений данной серии имеет специфическое применение:

■защита ввода (класс 2):

□PRD65r рекомендуется для объектов с очень высоким уровнем риска (открытая местность);

□PRD40r/PRD40 рекомендуется для объектов с высоким уровнем риска;

□PRD20r/PRD20 рекомендуется для объектов со средним уровнем риска;

□вторичная защита (класс 2 или 3):

■PRD8r/PRD8 обеспечивают вторичную защиту нагрузок в каскадных системах защиты с ограничителями перенапряжения на вводе.

Применение данного ограничителя перенапряжений требуется в случае размещения защищаемого электроприемника на расстоянии более 30 м от ограничителя перенапряжения на вводе.

Общие характеристики

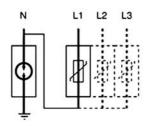
- ■Частота: 50/60 Гц.
- ■Рабочее напряжение: 230/400 B AC.
- ■Индикатор состояния с помощью белого/красного механического индикатора:

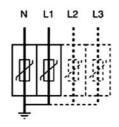
 □белый: нормальная работа

□красный: необходима срочная замена картриджа ограничителя перенапряжений

- ■защита от токов короткого замыкания посредством автоматического выключателя.
- ■Время срабатывания: <25 нс</p>
- ■Контакт дистанционной сигнализации (для PRD65r/PRD40r/PRD20r/PRD8r):

□перекидной контакт, 250 В/0,25 А


 \square присоединение посредством туннельных клемм 0,5...1,5 мм 2 .


■Присоединение с помощью туннельных клемм:

□кабель: 2,5...35 мм²

- ■Рабочая температура: -25°C... +60°C
- ■Степень защиты:
- □IP20 для зажимов
- □IP40 для передней панели
- ■Стандарты:
- □EN61643-11 и IEC61643-1 тип 2

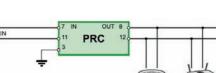
PRD Ограничители перенапряжений со сменным картриджем (класс 2 или 3)

			еть			Система заземления	Наименование	Защитный аппара
1P+N	3P+N	1P	2P	3P	4P	GAGGIVIJIGITUM		
		16555				IT	PRD65r 1P IT	50A
		16556				TTиTN	PRD65r 1P	кривая С
557						TTиTN-S	PRD65r 1P+N	_
			16442			TN	PRD65r 2P	_
				16558		IT	PRD65r 3P IT	_
				16443		TN-C	PRD65r3P	_
	16559					TTиTN-S	PRD65r3P+N	_
					16659	TN-S	PRD65r 4P	
		16561				ΤΤиΤΝ	PRD40r 1P	40A
		16566				TTuTN	PRD40 1P	- кривая С
562						TTuTN-S	PRD40r 1P+N	-
567						TTuTN-S	PRD40 1P+N	-
			16444			TN	PRD40r2P	-
			16667			TN	PRD402P	-
				16445		TN-C	PRD40r3P	-
				16568		TN-C	PRD403P	=
				16563		IT	PRD40r 3P IT	-
	16564					TTиTN-S	PRD40r3P+N	-
	16569					TT u TN-S	PRD403P+N	=
					16597	IT	PRD40r 4P IT	-
					16664	TN-S	PRD40r4P	-
					16669	TN-S	PRD404P	-
		16571				TTиTN	PRD20 1P	25A
672		10071				TTuTN-S	PRD20 11 PRD20r 1P+N	- кривая C
						TTuTN-S	PRD20 1P+N	-
570								
572			16446					-
572			16446	16447		TN	PRD202P	-
572			16446	16447		TN TN-C	PRD202P PRD203P	- - -
572	16674		16446	16447 16573		TN TN-C IT	PRD20 2P PRD20 3P PRD20r 3P IT	- - -
572	16674		16446			TN TN-C IT TT n TN-S	PRD20 2P PRD20 3P PRD20r 3P IT PRD20r 3P+N	- - - -
572	16674 16574		16446		16500	TN TN-C IT TT uTN-S TT uTN-S	PRD20 2P PRD20 3P PRD20r 3P IT PRD20r 3P+N PRD20 3P+N	- - - -
572			16446		16599 16673	TN TN-C IT TT n TN-S	PRD20 2P PRD20 3P PRD20r 3P IT PRD20r 3P+N	- - - - -
572		40570	16446			TN TN-C IT TT u TN-S TT u TN-S IT TN-S	PRD20 2P PRD20 3P PRD20r 3P IT PRD20r 3P+N PRD20 3P+N PRD20 4P IT PRD20 4P	-
		16576	16446			TN TN-C IT TT u TN-S TT u TN-S IT TN-S	PRD20 2P PRD20 3P PRD20 3P IT PRD20 3P + N PRD20 3P + N PRD20 4P IT PRD20 4P	20A
677		16576	16446			TN TN-C IT TT u TN-S TT u TN-S IT TN-S IT TN-S	PRD20 2P PRD20 3P PRD20 3P PRD20 3P+N PRD20 3P+N PRD20 3P+N PRD20 4PIT PRD20 4P PRD8 1P PRD8 1P	- - - - - 20A кривая С
		16576				TN TN-C IT TT u TN-S TT u TN-S IT TN-S TT u TN-S TT u TN-S	PRD20 2P PRD20 3P PRD20 73 P IT PRD20 73 P + N PRD20 3P + N PRD20 3P + N PRD20 4P IT PRD20 4P PRD8 1P PRD8 1P + N PRD8 1P + N	
677		16576	16448	16573		TN TN-C IT TT u TN-S TT u TN-S IT TN-S TT u TN TT u TN TT u TN TT u TN-S TT u TN-S	PRD20 2P PRD20 3P PRD20 3P IT PRD20 3P+N PRD20 3P+N PRD20 4P IT PRD20 4P PRD8 1P PRD8 1P+N PRD8 1P+N PRD8 2P	
677		16576		16573		TN TN-C IT TT ν TN-S TT ν TN-S IT TN-S TT ν TN-S TN ν TN-C	PRD20 2P PRD20 3P PRD20 3P IT PRD20 3P+N PRD20 3P+N PRD20 4P IT PRD20 4P PRD8 1P PRD8 1P+N PRD8 1P+N PRD8 1P+N PRD8 2P PRD8 3P	
677	16574	16576		16573		TN TN-C IT TT u TN-S TT u TN-S IT TN-S TT u TN-S TT u TN TN-S TT u TN TT u TN-S TT u TN-C IT	PRD20 2P PRD20 3P PRD20 3P+N PRD20 3P+N PRD20 3P+N PRD20 4PIT PRD20 4P PRD8 1P PRD8 1P+N PRD8 1P+N PRD8 2P PRD8 3P PRD8 3P	
677	16574	16576		16573		TN TN-C IT TT ν TN-S TT ν TN-S IT TN-S TT ν TN-S TT ν TN-S TT ν TN-C IT TT ν TN-S	PRD20 2P PRD20 3P PRD20 3P IT PRD20 3P+N PRD20 3P+N PRD20 3P+N PRD20 4P IT PRD20 4P PRD8 1P PRD8 1P+N PRD8 1P+N PRD8 2P PRD8 3P PRD8 3P PRD8 3P+N PRD8 3P+N	
677	16574	16576		16573		TN TN-C IT TT u TN-S TT u TN-S IT TN-S TT u TN-S TT u TN TN-S TT u TN TT u TN-S TT u TN-C IT	PRD20 2P PRD20 3P PRD20 3P+N PRD20 3P+N PRD20 3P+N PRD20 4PIT PRD20 4P PRD8 1P PRD8 1P+N PRD8 1P+N PRD8 2P PRD8 3P PRD8 3P	

PRD Ограничители перенапряжений со сменным картриджем (класс 2 или 3)

Наимено-	Кол-во	Ширина в9 мм	Макс. разряд-	Номин. Разряд-		вень огрниче пряжения, Up		Напр. - сети, -		Максимально ее напряжени		_ № по
вание	полюсов	модулях	ный ток, lmax (кА)	ный ток, In(кА)	CM	1	DM	Un(B)	C	CM	DM	кат.
					L/PE	N/PE	L/N		L/PE	N/PE	L/N	
PRD65												
PRD65r 1P IT	1P	2		_	≤2	-	-	_	440	-	-	16555
PRD65r 1P	1P	2			≤1,5	-	-	- 230 -	340	-	-	16556
PRD65r 1P+N	1P+N	4		_	-	≤1,5	≤1,5	230	-	260	340	16557
PRD65r 2P	2P	4	65	20	≤1,5	≤1,5	-		340	340	-	16442
PRD65r3PIT	3P	6	05	20	≤2	-	-	_	440	-	-	16558
PRD65r3P	3P				≤1,5	-	-	- 230/400 -	340	-	-	16443
PRD65r3P+N	3P+N	8			-	≤1,5	≤1,5	_ 230/400 -	-	260	340	16559
PRD65r4P	4P	0			≤1,5	≤1,5	-		340	340	-	16659
PRD40												
PRD40r 1P	1P	2		_	≤1,4	-	-		340	-	-	16561
PRD40 1P	1P	2			≤1,4	-	-		340	-	-	16566
PRD40r 1P+N	1P+N				-	≤1,4	≤1,4	- 230 -		260	340	16562
PRD40 1P+N	1P+N	4			-	≤1,4	≤1,4	- 230 -		260	340	16567
PRD40r 2P	2P	4			≤1,4	≤1,4	-		340	340	-	16444
PRD402P	2P			_	≤1,4	≤1,4	-	_	340	340	-	16667
PRD40r3P	3P		40	-15	≤1,4	-	-		340	-	-	16445
PRD403P	3P	6	40	15	≤1,4	-	-		340	-	-	16568
PRD40r3PIT	3P	3P		-	≤2	-	-	= =	460	-	-	16563
PRD40r3P+N	3P+N			-	-	≤1,4	≤1,4			260	340	16564
PRD403P+N	3P+N			-	-	≤1,4	≤1,4	- 230/400 -		260	340	16569
PRD40r 4P IT	4P	8		-	≤2	≤2	-		460	460	-	16597
PRD40r4P	4P			-	≤1,4	≤1,4	-	_	340	340	-	16664
PRD404P	4P			-	≤1,4	≤1,4	-		340	340	-	16669
PRD20												
PRD20 1P	1P	2			≤1,1	-	-		340	-	-	16571
PRD20r 1P+N	1P+N			-	-	≤1,4	≤1,1		-	260	340	16672
PRD20 1P+N	1P+N	4		-	-	≤1,4	≤1,1	- 230 -	-	260	340	16572
PRD202P	2P			-	≤1,1	≤1,1	-	-	340	340	-	16446
PRD203P	3P			-	≤1,1	-	-		340	-	-	16447
PRD20r3PIT	3P	6	20	5 -	≤1,6	-	-		460	-	-	16573
PRD20r3P+N	3P+N			-	-	≤1,4	≤1,1		-	260	340	16674
PRD203P+N	3P+N	0		-	-	≤1,4	≤1,1	- 230/400 -	-	260	340	16574
PRD20r4PIT	4P	8		-	≤1,6	≤1,6	-		460	460	-	16599
PRD204P	4P			-	≤1,1	≤1,1	-	-	340	340	-	16673
PRD класс 2/	класс 3											
PRD8 1P	1P	2			≤1/≤1	-	-		340	-	-	16576
PRD8r 1P+N	1P+N			-	-	≤1,4/≤1	≤1/≤1,1		-	260	340	16677
PRD8 1P+N	1P+N	4			-	≤1,4/≤1	≤1/≤1,1	- 230 -	-	260	340	16577
PRD8 2P	2P			-	≤1/≤1	≤1/≤1	-		340	340	-	16448
PRD8 3P	3P				≤1/≤1		-		340	-	-	16449
PRD8r 3P IT	3P	6	8	2,5	≤1,4/≤1,6	-	-		460	-	-	16578
PRD8r 3P+N	3P+N					≤1,4/≤1	≤1/≤1,1		-	260	340	16679
PRD8 3P+N	3P+N	_		-	-	≤1,4/≤1	≤1/≤1,1	- 230/400 -	-	260	340	16579
PRD8r 4P IT	4P	8		-	≤1,4/≤1,6	≤1,4/≤1,6	-		460	460	-	16678
PRD8 4P	4P			-	≤1/≤1	≤1/≤1	_		340	340	-	16680
					,	-,						

СМ: общий режим (фаза – земля и нейтраль – земля). DM: дифференциальный режим (фаза – нейтраль


Сменные картриджи

Тип	Ограничитель перенапряжения	№ по каталогу
C 65-440	PRD 65r IT	16580
C 65-340	PRD 65r	16681
C40-460	PRD 40r IT	16684
C40-340	PRD 40, PRD 40r	16685
C 20-460	PRD 20r IT	16686
C 20-340	PRD 20, PRD 20r	16687
C8-460	PRD 8r IT	16688
C8-340	PRD 8, PRD 8r	16689
Cneutral	все типы	16691

PRC, PRI Ограничители перенапряжений для слаботочных цепей

Тип	Кол-во мод. Ш=9 мм	№ по каталогу
PRC	2	16337

PRI

<u></u> - - - - - - - - - - - - -		

Тип	Кол-во мод. Ш=9 мм	№ по каталогу
PRI	2	16339

Применение

Ограничители перенапряжений РRС предназначены для защиты аналоговых телефонных сетей. Подключаются последовательно к защищаемым приборам (телефоны, модемы и т.д.).

Ограничители перенапряжений PRI предназначены для защиты дискретных и аналоговых входов ПЛК, атакже цепей питания напряжением до 53 В постоянного тока, и напряжением до 37 В переменного тока.

Общие характеристики

- ■рабочая температура: -25 °C...+60;
- ■температура хранения: -40 °C...+85;
- ■степень защиты: □зажимы: IP20;

□передняя панель: IP40; □IK: 05.

Характеристики

PRC

- ■максимальное рабочее напряжение Uc: 180 B DC, 130 B AC;
- ■предельное напряжениеUp: 300 B;
- ■разрядный ток In (фронт 8/20): 10 кА;
- ■максимальный разрядный ток Imax (фронт 8/20): 18 кA;
- ■время срабатывания: <500 нс;
- ■номинальный импульсный ток: 100 А;
- ■номинальный ток: 450 мA;
- **■**сопротивление: 2,2 Ом;
- ■масса: 25 г.

PRI

- ■максимальное рабочее напряжение Uc: 53 B DC, 37 B AC;
- ■предельное напряжениеUp: 70 B;
- ■разрядный ток In (фронт 8/20): 10 кA;
- ■максимальный разрядный ток Imax (фронт 8/20): 10 кA;
- ■время срабатывания: <1 нс;</p>
- ■номинальный импульсный ток: 70 A;
- ■номинальный ток: 300 мА;
- ■сопротивление: 4,7 Ом;
- ■масса: 65 г.

TL, TLI Импульсные реле

Кол-во Кол-полю- моду		. Напряжені пер. ток	ие катушки пост. ток	№ по кат.
	9 мм(А)	(B)	(B)	
TL 16 A				
1 2	16	230-240	110	15510
1.4		130	48	15511
A1 'J		48	24	15512
紀7.		24	12	15513
2		12	6	15514
2 2	16	230-240	110	15520
I 1I 3I		130	48	15521
私】】		48	24	15522
AT 7.7.		24	12	15523
2 4		12	6	15524
3 2	16	230-240	110	15510
1.41. 1	al ol			+15530
A1L 'J	"]"]	130	48	15511
₩7, * P	77.			+15531
2 6	8 10	48	24	15512
				+15532
		24	12	15513 15533+
		12	6	15514
		12	-	+15534
4 2	16	230-240	110	15520
·				+15530
A1 1 3	5 9	130	48	15521
A + C	፟፟፟፟፟ / /			+15531
2 4	6 8 10	48	24	15522
				+15532
		24	12	15523 15533+
		12	6	15524
		12		+15534
TLI 16 A				
1 2	16	230-240	110	15500
1 1		48	24	15502
A1/		24	12	15503
A2 2 4				
Блок расш	ирения л	ля TL 16 A і	4 TLI 16 A	
ETL 2	16	230-240	110	15530
		130	48	15531
		48	24	15532
中/.		24	12	15533
T. [1]		24 12	12 6	15533 15534

Применение

Предназначены для дистанционного импульсного включения или отключения электрических цепей.

TL 16 A и TLI 16 A

Характеристики

■ силовые цепи:

 \square ном. ток (In) 16 A, $\cos \phi$ = 0,6; \square напряжение: 250 B, 50-60 Гц для одно-и двухполюсных реле; 415 B, 50-60 Гц для трех- и четырехполюсных реле (TL+ETL);

■ цепи управления:

□ напряжение (Uc): 12 - 240 В пер. тока, 6 - 110 В пост. тока;

- отклонение при 50 Гц: Uc + 6 % 15 %;
- отклонение при 60 Гц: Uc ± 6 %;
- отклонение при постоянном токе: $\pm (6 10)\%;$ \square мощность импульса:

19 ВА для одно- и двухполюсных реле; 38 ВА для трех- и четырехполюсных реле (TL+ETL);

pecypc:

 \square 200 000 циклов при 22 А пер. тока ($\cos \varphi = 0.6$);

 \Box 400 000 циклов при 21 А пер. тока ($\cos \varphi = 1$);

■ присоединение: через зажимы для кабелей сечением 0,5-6 мм² в соответствии с нормами МЭК 669-1 и МЭК 669-2.

Общие характеристики

■ управление при помощи

переключателя на передней панели;

- дистанционное отключение;
- электрическое управление: длительность импульса более 50 мс (рекомендуемая величина для автоматики 200 мс);
- максимальная частота коммутации 5 операций в минуту;
- \blacksquare механическая сигнализация на передней панели;
- диапазон рабочих температур: от -20 до + 50 °C;
- тропическое исполнение: степень T2 (относительная влажность 95 % при +55 °C и выше);
- маркировка: табличка на передней панели:

_							
		Кол-во модулей Ш = 9 мм	ток	Напряжение пер. ток (A)	катуш пост. т (В)	КИ	№ по кат. (B)
	TL 32 A	Δ.					
	1	2	32	230-240	110		15515
	A1 1 A2 2						
	2	4	32	230-240	110		15515
	A1 1 +	· -/				+	15505
	3	6	32	230-240	110		15515 15505
	4	8	32	230-240	110		15515 15505
	TL 32 /	Α					
	ETL	2	32	230-240	110		15505
	 						

■ уровень звука при включении <60 дБ (на расстоянии до 1 м).

TL 32 A

Характеристики

■ силовые цепи:

□ номинальный ток (In) 32 A, соs φ = 0,6; □ напряжение (Uc): 250 В для однополюсных реле, 415 В для двух, трех- и четырехполюсных реле;

■ цепи управления:

□ напряжение (Uc): от 230 до 240 B, 50-60 Ги

□ мощность импульса: 19 ВА для однополюсных реле, 38 ВА – для двухполюсных, 57 ВА – для трехполюсных, 76 ВА – для четырехполюсных;

■ коммутационная износостойкость:
 □ 200 000 циклов для однополюсных реле;
 □ 400 000 циклов для двух, трех- и
 четырехполюсных реле;

■ присоединение:

□ силовые цепи:

через зажимы для кабелей сечением до 10 мм²;

□ цепи управления:

через зажимы сечением от 0,5 до 6 мм.

TLc, TLm, TLs Импульсные реле со встроенными вспомогательными функциями

Тип	Кол-во модуле Ш = 9 м	ей(А)	гок Напряжен пер. ток (В)	ие катушки пост. ток (B)	№ по кат.
TLc	2	16	230-240	110	15518
TLc +ET	-	16			15518 +15530

TLc

Управляет группой импульсных реле. Фиксирует местную импульсную команду.

Возможные комбинации

- ETL (каталожный номер 15530);
- ATLc+s (используется только для сигнализации).

Тип		м. ток Напряжеі	ние катушки	№ по
	модулей (А)	пер. ток	пост. ток	кат.
	Ш = 9 мм	(B)	(B)	
TLm	2 16	230-240	110	15516
TLm	4 16			15516
+ETI	L			+15530

TLm

Действует по команде от переключающего контакта (коммутатора, реле времени, термореле и т. д.) для одного или нескольких TLm.

Возможные комбинации

- ETL (каталожный номер 15530);
- ATLc + с (используется только для сигнализации).

Тип	Кол-во Ном. ток Напряжение катушки				№ по
	модуле		пер. ток	пост. ток	кат.
	Ш=9 м	IΜ	(B)	(B)	
TLs	2	16	230-240	110	15517
TLs		16			15517
+ET	L				+15530

TLs

Осуществляет сигнализацию состояния В/О аппарата.

Возможные комбинации

■ ETL (каталожный номер 15530), ATLt, ATLz, ATLc+s.

Общие характеристики

■ силовые цепи:

□ номинальный ток (In) 16 A, $\cos \varphi = 0.6$; □ напряжение;

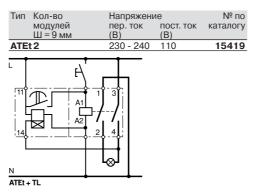
- 250 В пер. тока для однополюсных реле;
- 415 В пер. тока для двух, трех- и четырехполюсных реле;
- цепи управления:

□напряжение

- при 50 Гц: +6%, -15%;
- при 60 Гц: <u>+</u>6%;

□ мощность импульса при срабатывании 19 BA (38 BA с ETL);

□ длительность импульса: 50 мс;


■вспомогательные цепи: 6 A; 240 B, cos φ = 1.

Характеристики

Идентичны TL 16 A.

ATEt, ATLz, ATLc+s, ATLc+c, ATL4 Вспомогательные устройства

Модуль задержки времени ATEt

Производит автоматический возврат импульсного реле в исходное положение в течение от 1с до 10 ч:

- цикл отсчета времени начинается с момента включения аппарата, следующий управляющий импульс отключает аппарат и прерывает процедуру отсчета времени;
- монтаж: с левой стороны TL, TLI, TLs, Tlc.

Модуль ATLz

Позволяет управлять импульсным реле кнопкой с подсветкой (неоновые лампы), исключая возможность ложного срабатывания:

- если ток, потребляемый кнопкой-индикатором ЗмА (ток удержания устройства при номинальном напряжении), то используется одно устройство ATLz; для 7мА возможно подключение двух ATLz;
- монтаж: с левой стороны TL, TLI, TLs, Tlc.

каталогу
№ по

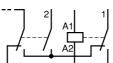
ATLz + TL

Moдуль ATLc + s

Позволяет осуществлять централизованное управление группой импульсных реле, каждое из которых коммутирует независимые цепи, а также сигнализацию их состояния:

- монтаж: с правой стороны для TL, TLI, TLs, TLc, Tlm;
- вспомогательный контакт состояния: 6 A, 240 B, $\cos \varphi$ = 1.

Тип	Кол-во модулей Ш = 9 мм	Напряжение пер. ток (B)	№ по каталогу
ATLc+	c 2	130 - 240	15410


Модуль ATLc + c

Позволяет осуществлять централизованное управление большим количеством импульсных реле, сохраняя их ос-новные функции и централизацию в за-висимости от уровней:

- группа из TLc + TL (TLI или TLs) + ATLc+s управляется одним ATLc+c;
- монтаж: без механических креплений между реле и вспомогательными устрой-ствами.

Тип	Кол-во модулей Ш = 9 мм	Напряжен пер. ток (В)	пост. ток (B)	
ATL4	4	230 - 240	110	15412

Модуль ATL4

Позволяет осуществлять последовательное, управление двумя цепями.

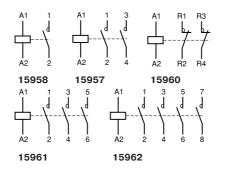
■ цикл:

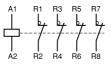
□ 1-й импульс - TL1 замкнут, TL2 разомкнут;

□ 2-й импульс - TL1 разомкнут; TL2

□ 3-й импульс - TL1 и TL2 замкнуты; □ 4-й импульс - TL1 и TL2 разомкнуты;

□ 5-й импульс - TL1 замкнут, TL2 разомкнут и т. д.;


■ монтаж: между двумя реле.


Контакторы

	1-B0 1ЮСОВ	Кол-в модул Ш = 9	ей ток	Напряжен пер. ток (A)	ние № по (В)
кат				` '	(/
1	1н.о.	2	25	230-240	15958
2	1 <u>н.о.+1</u>	н.з. 2	16	230-240	15956
	2н.о.	2	16	230-240	15957
	2н.о.	2	25	230-240	15959
	2н.о.		25	24	16020
	2н.з.	2	25	230-240	15960
	2н.о.	4	40	230-240	15966
	2н.о.	4	63	230-240	15971
	2н.о.	4	63	24	16024
	2 H.O.	6	100	230-240	15977
3	Зн.о.	4	25	230-240	15961
	Зн.о.	6	40	230-240	15967
	2H.0.+1	н.з. 6	63	230-240	15319
	3 H.0.	6	63	230-240	15972
4	4н.о.	4	25	230-240	15962
	4н.о.	4	25	24	16022
	4н.з.	4	25	230-240	15963
	4н.з.	4	25	24	16023
	$2_{\text{H.O.}}+2$	н.з. 4	25	230-240	15964
	4н.о.	6	40	230-240	15968
	4н.з.	6	40	230-240	15969
	4н.о.	6	63	230-240	15973
	4н.о.	6	63	24	16025
	4н.з.	6	63	230-240	15974
	4н.з.	6	63	24	16026
	$2_{H.0.+2}$	н.з. 6	63	230-240	15975
	4н.о.	12	100	230-240	15978

15963

Применение

Модульные контакторы СТ позволяют коммутировать токи до 100 А.

Характеристики

■ силовые цепи:

□ ном. ток (ln): 6-100 А при 40°C (категория АС7а);

□ рабочее напряжение:

- 250 В для одно- и двухполюсных контакторов;
- 400 В для трех- и четырехполюсных контакторов;

□частота: 50-60 Гц;

■ цепи управления:

□ рабочее напряжение:

- 24 B + 10%;
- 220-240B ± 10%;

□ частота: 50-60 Гц;

- диапазон рабочих температур: от -5°C до +60°C;
- тропическое исполнение: степень Т2 (относительная влажность 95% при 55°C);
- уровень шума катушки < 20 дБ для
- "малошумящего" исполнения;
- присоединение:

□ через зажимы для кабелей;

□ цепи управления:

- гибкий кабель: 2 x 2,5 мм²;
- жесткий кабель: 2 x 1,5 мм²;
- □ силовые цепи:
- гибкий кабель:

2 x 2,5 мм² для 16 и 25 А;

2 x 10 мм² для 40 и 63 A; 2 x 35 мм² для 100 A;

жесткий кабель:

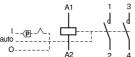
6 мм² для 16 и 25 А;

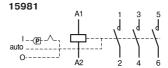
25 мм² для 40 и 63 А;

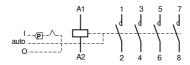
50 мм² для 100 А;

- индикатор напряжения (катушка под напряжением) расположен на передней панели каждого аппарата;
- маркировка: допускается до 5 маркировочных знаков на поле;
- потребление мощности цепями управления:

Кол-во	Ном.	Сраба-	Удер-	Мощ-
полюсов	TOK	тыва-	жание	ность
	(A)	ние (ВА)	(BA)	(Вт)
1и2	16-25	15	3,8	1,3
3и4	25	34	4,6	1,6
2	40-63	34	4,6	1,6
3и4	40-63	53	6,5	2,1
2	100	53	6,5	2,1
4	100	106	13	42


 $^{^{\}star}$ Относительно частоты 60 Гц проконсультируйтесь в Schneider Electric.


Контакторы с ручным управлением



15982

15983

Применение

Позволяют вручную коммутировать цепи

Контакторы СТ с ручным управлением оборудованы ручным селектором на 3 позиции:

- автоматический пуск;
- принудительный пуск и удержание;
- останов.

Характеристики

■ силовые цепи:

□ ном. токи (In) при 40 °C: от 25 до 63 А; □ рабочее напряжение:

- 250 В для одно- и двухполюсных контакторов;
- 400 В для трех- и четырехполюсных контакторов;

□ частота: 50-60 Гц;

■ цепи управления:

□ рабочее напряжение:

- 24 B: ±10 %;
- 220-240 B ± 10 %;
- □ частота: 50-60 Гц;
- диапазон рабочих температур:
- от 5°C до 60°C;
- тропическое исполнение: степень Т2 (относительная влажность 95% при 55°C);
- присоединение:

□ через зажимы для кабелей;

□ цепи управления:

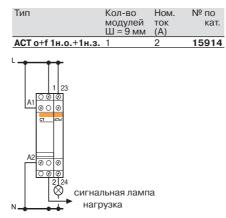
- гибкий кабель: 2 x 2,5 мм²;
- жесткий кабель: 2 x 1,5 мм²;

□ силовые цепи:

- гибкий кабель:
- $2 \times 2,5$ мм 2 для 16 и 25 A; 2×10 мм 2 для 40 и 63 A;
- 2 x 35 мм² для 100 A;
- жесткий кабель:

6 мм² для 16 и 25 А; 25 мм² для 40 и 63 А;

50 мм² для 100 А;


- индикация наличия напряжения или принудительного пуска – на передней панели аппарата (красный сигнал);
- мощность импульса срабатывания и удержания:

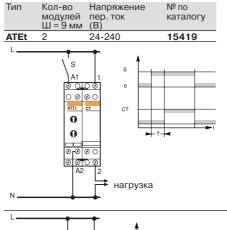
Кол-во полю- сов		Мощност импульсная		потребляемая
1и2	16-25	15	3,8	1,3
3и4	25	34	4,6	1,6
2	40-63	34	4,6	1,6
3и4	40-63	53	6,5	2,1

^{*} Относительно частоты 60 Гц проконсультируйтесь в Schneider Electric.

Вспомогательные устройства для СТ

Вспомогательный контакт ACT о + f

Применение

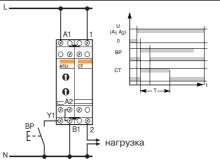

Предназначен для сигнализации и управления.

- замыкающий + размыкающий контакт; напряжение: 24-240 В, 50-60 Гц;
- ном. ток:
- \square 10 мА минимум при 24 В, $\cos \varphi = 1$;
- □ 2 А максимум при 240 B, cos φ = 1;
- присоединение: через зажимы для гибкого кабеля сечением $2 \times 2,5 \text{ MM}^2$.

Вспомогательные устройства для СТ

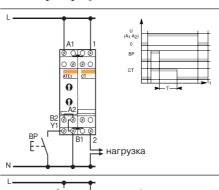
(продолжение)

Реле времени ATEt


Применение

Предназначается для создания выдержки времени. В зависимости от схемы соединений возможны четыре варианта выдержки времени Т.

Выдержка времени типа А


- выдержка времени при включении нагрузки под напряжение;
- одиночный цикл включения под напряжение:
- напряжение на нагрузку подается в конце выдержки времени Т.

Выдержка времени типа В

- выдержка времени после замыкания вспомогательного контакта (кнопки);
- отсчет выдержки времени начинается с момента замыкания управляющего контакта:
- нагрузка отключается в конце выдержки времени Т.

Выдержка времени типа С

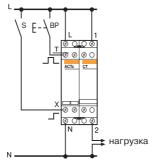
нагрузка

O

o

- напряжение на нагрузку подается в момент замыкания управляющего контакта (кнопки импульса);
- единичный цикл отсчета выдержки времени начинается с момента размыкания импульсного контакта;
- нагрузка отключается в конце выдержки времени Т.

Выдержка времени типа Н



■ нагрузка отключается в конце выдержки времени Т.

- присоединение защелками к контактору СТ с левой стороны;
- интервал времени: от 1 с до 10 ч;
- напряжение питания цепей управления: от 24 до 240 В;
- частота: 50-60 Гц*;
- потребление: 5 ВА;
- диапазон рабочих температур: от -5 °C до +60 °C;
- ток выхода:
- 200 мА длительный;
- 3 А в течение 50 мс;
- подключение: через зажимы для кабеля сечением до 1,5 мм²;
- погрешность: ±0,5%.
- * Относительно частоты 60 Гц проконсультируйтесь в Schneider Electric.

Тип	Кол-во модулей Ш = 9 мм	Напряжение пер. ток (B)	№ по каталогу
ACTc	2	230-240	18308
	2	14-48	18309

ACTc

Применение

Присоединяется к контактору и позволяет выполнять 2 типа команд:

- командный локальный импульс (вход Т);
- командный централизованный постоянный сигнал (вход X).

Последняя команда является приоритетной.

Общие характеристики

- присоединение защелками с левой стороны контактора;
- длительность импульса: 250 мс;
- ■потребление: 3 ВА;
- отключение цепи:

□ < 1 с: сохраняет начальное состояние;</p>

□ ≥ 5 с: восстановление от 0,

включение через входы X или Т;

■присоединение: через зажимы для кабеля сечением до 6 мм².

АСТс на 230 В пер. тока

- ■напряжение: 230 В + 10%, 50-60 Гц;
- максимальная нагрузка:

□ 400 ВА - срабатывание;

□ 100 ВА - удержание.

АСТс на 24-48 В пер. или пост. тока

- напряжение: 24-48 В +10%, 50-60 Гц;
- максимальная нагрузка:

□ срабатывание:

- 96 BA-48 B;
- 48 BA-24 B;
- □удержание:
- 24 BA-48 B;
- 12 BA-24 B.

Тип	Кол-во модулей Ш = 9 мм	Напряжение пер. ток (B)	№ по каталогу
ACTp	2	230-240	15920
-	2	24	15919

ACTp

Применение

Ограничивает перенапряжения в цепи управления.

Характеристики

- присоединение защелками с левой стороны контактора СТ;
- ■напряжение: 24-230 В пер. тока;
- потребление: 3 ВА;
- присоединение: через зажимы для кабеля сечением до 4 мм².

Кол-во полюсов	Кол-во модулей Ш = 9 мм	Ном. ток (A)	№ по каталогу
3 и 4	4	25	15921
2	4	40-63	15922
3 и 4	6	40-63	15923
фальш-	1		27062

Аксессуары

Клеммные заглушки

■ применяются для изоляции клемм аппаратов и ограничения перегрева.

I Выключатели нагрузки ВР Кнопки

Выключатель с индикатором

			Напряжение	№ по
	модулей	(A)	пер. ток	кат.
	Ш = 9 мм		(B)	
1P	2	20	250	15063
		32	250	15100
2P	2	20	415	15064
		32	415	15101
Блок				
контакта ОБ	2			15096

Кол-во полю- сов	Кол-во модулей Ш = 9 мм	(A)	Напряжение пер. ток (B)	е № по кат.
1	2	20	250	15005
11		32	250	15009
\ <u>\\\</u>		63	250	15013
/0		100	250	15090
)				
2				
2	2	20	415	15006
		32	415	15010
1 3	4	63	415	15014
′ ዋ′ ዋ		100	415	15091
2 4				
3	4	32	415	15011
	6	63	415	15015
1 3	5	100	415	15092
′ ዋ′ ዋ′	4			
1-1-7	\			
2 4	6			
	- •			
4	4	32	415	15012
	8	63	415	15016
1 3	5 7	100	415	15093
2 4	6 8 7 4			

Выключатели нагрузки I

Применение

Используются для коммутации цепей под нагрузкой, уже защищенных от перегрузок.

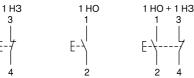
Характеристики

- индикатор подвижного контакта;
- соответствует нормам: МЭК 408 и МЭК 669.1, BS 5419, VDE 0660 и МЭК 947.3 (ном. ток 63 и 100 А);
- постоянный ток: 48 В
- (2 полюса последовательно 110 В);
- механическая износостойкость:
- □ 20-30 А: 300 000 циклов;
- □ 63 A: 200 000 циклов;
- □ 100 A: 100 000 циклов;
- коммутационная износостойкость:
- □ 20-30 A: 30 000 циклов;
- □ 63 А: 20 000 циклов;
- □ 100 А: 10 000 циклов;
- допустимый ток к. з.: 2 кA в течение 1c;
- тропическое исполнение: степень Т2 (относительная влажность 95% при 55°C);
- присоединение через зажимы:

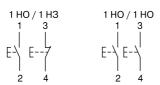
□ для кабеля сечением до 10 мм²

(20 u 32 A);

□ для кабеля сечением до 50 мм² (63 и 100 А).

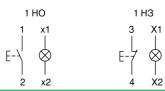


Тип	Кол-во	Цвет	Контакты	№ по
	модулей Ш = 9 мм	кнопки		кат.


Простая кнопка ВР

ooran kiioiika bi			
2	серая	1H3	18030
	красная	1H3	18031
	серая	1HO	18032
	серая	1HO+1H3	18033
	•		

Двойная кнопка ВР


18034 1HO/1H3 зеленая/красная 18035 серая/серая 1HO/1HO

Тип	Кол-во	Цвет	Цвет	Контакты	№ по
	модулей	индика-	кнопки		кат.
	Ш = 9 мм	тора			

Простая кнопка ВР с индикатором

. 2	110-230 B	зеленый	серая	1HO	18036
	пер. тока	красный	серая	1H3	18037
	12-48 B	зеленый	серая	1HO	18038
	пер./пост. тока	красный	серая	1H3	18039

Кнопки ВР

Позволяют организовать управление при помощи импульсов.

- рабочее напряжение: 250 В пер. тока;
- рабочий ток: 20 A;
- электрическая прочность: 30 000 операций AC22 ($\cos \varphi = 0.8$);
- соответствие нормам: МЭК 60669-1 и МЭК 60947-5-1;
- индикатор по технологии LED:
- □ потребление 0,3 Вт;
- □ срок службы: 100 000 ч в режиме постоянного горения;
- □ индикатор не требует
- техобслуживания (светодиоды не
- требуют замены).
- рабочая температура:
- от -20 °C до +50 °C;
- температура хранения: от -40 °C до +80 °C;
- тропическое исполнение, степень Т2 (относительная влажность 95% при 55°C);
- присоединение жестким или гибким
- кабелем с/без наконечника:
- □ через зажимы 2 x 2,5 мм² и винтов, маркированных +/-, Posidriv №1;
- □ через выдвижные зажимы.

V Световые индикаторы Переключатели СМ

Мигающий индикатор

модулей

18330

100	3	-				
	ĥ		12	ì		
			0.			
		ľ	-	Ī	١	
			1	Š	ı	
			T	7		
Ų	0	e	¥		•	

18325

18326

Двойной индикатор			
2	зеленый/ красный	18325	

	2	красный	18326	
Тип	Кол-во	Цвет	№ по каталог	V

пер. ток 230-400 В

№ по каталогу

18070

18071

18072

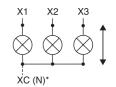
18073

18074

Ш = 9 мм		3 фазы
Индикатор наличия тр	ехфазного напряжен	ния
2	красный/ красный/	18327

Применение

Световая сигнализация.


Серия индикаторов V включает в себя:

3. Мигающий

4. Индикатор наличия трехфазного напряжения

Характеристики

- соответствие нормам МЭК 60947-5-1 (кроме 18327, соответствующего нормам МЭК 73 и МЭК 1000-4);
- рабочая частота: 50-60 Гц;
- индикатор с технологией LED:
- □ потребление:
- 0,3 Вт (0,5 Вт для **18327**);
- □ срок службы: 100 000 часов непрерывного горения; □ индикаторы не требуют
- техобслуживания (светодиоды не требуют замены);
- частота мигания: 2 Гц;
- степень защиты:
- □ IP4/IрххD для внешних частей; □ IP2/IрххВ на уровне клемм;
- разделительная междуфазная перегородка с отверстиями для зубцов гребенчатых шинок любого типа;
- степень загрязнения: 3 (2 для 18325);
- рабочая температура:
- от 20 °C до + 50 °C:
- температура хранения:от 40 °C до + 100 °C;
- тропическое исполнение: степень Т2 . (относительная влажность 95% при 55 °С);
- присоединение: жестким или гибким кабелем с/без наконечника:
- \Box через туннельные клеммы 2 х 2,5 мм², винты, маркированные +/-, Pozidriv №1;
- □ через выдвижные клеммы,

облегчающие подключение кабелей.

18070

18074

		. i pyriiia
Серия переклю	очателей СМ включ	ает в себя:

Кол-во

СМ на 2 позиции

СМ на 3 позиции

модулей

Ш = 9 мм

Тип

Контакты

1 группа

2 группа

1 группа

1 HO + 1H3

Переключатели СМ позволяют вручную управлять электрическими цепями.

Характеристики

- номинальное напряжение 250 В пер.т.;
- номинальный ток 20 А:
- электрическая стойкость: 30 000 циклов АС22:
- соответствие стандартам IEC 60669-1 и IEC 60947-5-1;
- рабочая температура: от 20 ₀C до + 50 ₀C;
- температура хранения:

подсоединение

- от 40 оС до + 80 оС;
- тропическое исполнение: тип 2 (относительная влажность 95% при 55 $_{0}$ C);
- присоединение: жестким или гибким кабелем с/без наконечника:
- \square 5 туннельных клемм 2 х 2,5 мм₂, винты, маркированные +/-, Pozidriv №1; □ 5 ступенчатых клемм, упрощающих

IH

Электромеханические реле времени шириной 18 мм

15331

15335

Наименование	Мин. время между двумя операциями	№ по каталогу
IHH 7d 1c ARM	2 часа	15331
IH 24h 1c SRM	15 минут	15335
IH 24h 1c ARM	15 минут	15336
III 2411 IC ANIVI	15 минут	1000

Применение

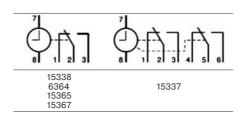
- ■используются для подачи команд на замыкание и размыкание цепи в зависимости от заранее заданного пользователем времени перемещением подвижных сегментов на циферблате.
- ■использование часового, суточного или недельного цикла: одна и та же программа повторяется каждый час, каждые сутки (IH 24h), либо каждую неделю (IH 7d).
- ■возможна установка программы на замыкание или на размыкание контакта.

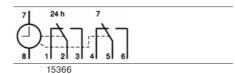
- ■напряжение: 230 B AC ± 10%.
- ■частота: 50/60 Гц.
- ■потребление: 2,5 BA.
- ■срок службы: 10 лет.
- ■запас хода: 100 ч (кроме IH 24h 1c SRM).
- ■точность: \pm 1с в сутки при 20 0 С. □номинальный ток контактов:
- \Box 16 А до 250 В АС ($\cos \varphi = 1$), \Box 4 А до 250 В АС ($\cos \varphi = 0.6$).
- ■программирование с помощью подвижных сегментов на циферблате.
- ■общий размер: 2 модуля по 9 мм.
- ■степень защиты:
- □ІР40 для передней панели,
- □IP20В для зажимов.
- ■рабочая температура: -10 °C...+50 °C.
- ∎присоединение с помощью кабеля до $6\,\mathrm{mm}^2$

IH

Электромеханические реле времени

15338


15365



15366

Наименование	Мин. время между двумя операциями	№ по каталогу
IH 60min 1c SRM	1 мин. 15 сек.	15338
IH 24h 1c SRM	30 мин.	16364
IH 24h 1c ARM	30 мин.	15365
IH 24h 2c ARM	30 мин.	15337
IH 7d 1c ARM	4 часа	15367
IH 24+7d 1+1c ARM	45 мин.+12 часов	15366

ARM		
Аксессуары		
Доп. перемычки (комплект из: 5 красных, 5 зеленых, 5 белых, 5 желтых)	15341	

Применение

- ■используются для подачи команд на замыкание и размыкание цепи в зависимости от заранее заданного пользователем времени перемещением перемычек на циферблате.
- ■использование часового, суточного или недельного цикла: одна и та же программа повторяется каждый час (IH 60min), каждые сутки (IH 24h), либо каждую неделю IH 7d.
- ■перекидной контакт.

Характеристики

- ■напряжение: 230 B AC ± 10%.
- ■частота: 50/60 Гц (50 Гц для IH 60min. 1c SRM, IH 24h+7d 1+1c SRM).
- ■потребление: 2,5 BA (1 BA для IH 60min. 1c SRM)
- ■точность: ± 1 с в сутки при $20\,{}^{0}$ С.
- ■номинальный ток контактов:
- \Box 16 А до 250 В АС ($\cos \varphi = 1$),
- □4 A до 250 B AC (cos φ= 0,6). ■программирование:

□с помощью перемычек (в комплекте):

Тип реле IH	Кол-во перемычек
IH 24h 2c ARM	4 красные+4 зеленые+2 белые
IH 24+7d 1+1c ARM	6 желтых (24 часа)
In 24+70 I+10 ARIVI	12 синих+2 красных (7 белых)
IH 7d 1c ARM	7 синих+7 красных

□с помощью подвижных сегментов для других каталожных номеров

- ■общий размер: 6 модулей по 9 мм.
- ■степень защиты:
- □ІР40 для передней панели,
- □ІР20В для зажимов.
- ■рабочая температура: -10 °C...+50 °C.
- ■присоединение с помощью кабеля до 6 мм².
- ■аксессуары для IH 24h 2c ARM, IH 24+7d 1+1c ARM, IH 7d 1c ARM: дополнительные перемычки для установки большего количества временных уставок.

IHP

Программируемые реле времени шириной 18 мм

Наименование	Мин. время между двумя операциями	Объем памяти	№ по каталогу
IHP 1c 18 мм	1 мин	28	15724
IHP+ 1c 18 мм	1 мин	42	15725

Применение

- ■используются для подачи команд на замыкание и размыкание цепи по заранее заданной пользователем и сохраненной в памяти уставке времени.
- ■использование недельного цикла: одна и та же программа повторяется каждую неделю.
- ■автоматический переход на зимнее/летнее время с возможностью корректировки в зависимости от часового пояса.
- ■временное или постоянное выполнение программы посредством нажатия двух кнопок на устройстве.

- ■напряжение: 230 B AC ± 10%.
- ■частота: 50/60 Гц.
- ■потребление: 2,5 ВА для IHP 1с 18 мм, 3 ВА для IHP+ 1с 18 мм.
- ■сохранение программы и установленного времени с помощью литиевой батареи: □срок службы батареи: 10 лет, □запас хода: 3 года.
- ■точность: \pm 1с в сутки при 20 0С.
- ■номинальный ток контактов:
- \Box 16 A до 250 B AC (cos ϕ = 1),
- \Box 4 А до 250 В АС ($\cos \varphi = 0,6$). \blacksquare общий размер: 2 модуля по 9 мм.
- ■степень защиты: IP20B
- ■рабочая температура: -10 °C...+50 °C.
- ∎присоединение с помощью кабеля до 6 $\,{\rm mm}^2.$

IHP

Программируемые реле времени

CCT15400

CCT15402

CCT15401

CCT15403

Объем № по

Наименование Мин. время

CCT15860

CCT15861

Применение

- ■используются для подачи команд на замыкание и размыкание одной (IHP 1c/IHP+ 1c) или двух независимых цепей (IHP 2c/IHP+ 2c) по заранее заданной пользователем и сохраненной в памяти уставке времени.
- ■использование недельного цикла: одна и та же программа повторяется каждую неделю.
- ■автоматический переход на зимнее/летнее время с возможностью корректировки в зависимости от часового пояса.
- ■временное или постоянное выполнение программы посредством нажатия двух кнопок на устройстве.
- ■IHP 1C, IHP 2C и IHP+ имеют функцию «выходного дня», позволяющую установить дату начала и конца времени отсутствия.

Общие характеристики

- ■напряжение: 230 В АС ± 10%.
- ■частота: 50/60 Гц.
- ■потребление: 4 ВА для IHP 1c/+1c, 7 ВА для IHP 2c/+2c.
- ■сохранение программы и установленного времени с помощью литиевой батареи: □срок службы батареи: 6 лет,
- □запас хода: 6 лет.
- **■**точность: \pm 1с в сутки при 20 0 С.
- ■номинальный ток контактов:
- \Box 16 A до 250 B AC ($\cos \varphi = 1$), \Box 10 A до 250 B AC ($\cos \varphi = 0.6$).
- ■общий размер: 5 модулей по 9 мм.
- ■степень защиты: IP20B
- ■рабочая температура: -10 °C...+50 °C.
- ■карман для инструкции под панелью.
- ■присоединение кабелем до 2,5 мм² с помощью 2-х безвинтовых клемм на полюс.

Особые характеристики для 1 и 2-канальных реле IHP+

■ручные настройки:

□временная отмена выполнения программы на выходные или праздничные дни установкой двух дат - начала и конца времени отсутствия

□симуляция присутствия за счет установки случайного срабатывания.

■импульсный режим:

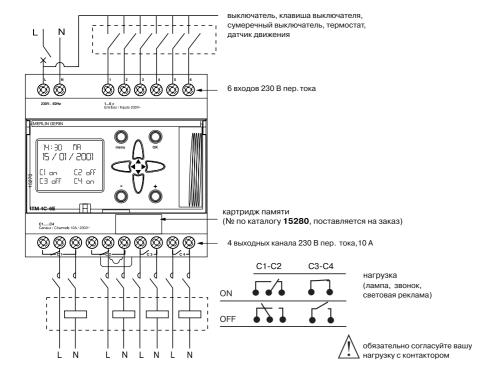
 \Box регулируемое импульсное программирование от 1 до 59 с,

□приоритет импульсного программирования.

- ■подсветка экрана.
- ■установка картриджа памяти на переднюю панель
- ■дополнительные входы для подключения внешних устройств управления (1 вход для IHP+1c и 2 входа для IHP+2c)

□характеристики входов:

- напряжение: 230 В АС +10%,15%,
- частота: 50/60 Гц,
- номинальный ток: 1,2 мА,
- потребление: тах 0,3 мВт,
- максимальная длина подключаемого провода: 100 м.
- ■аксессуары:


□комплект ПК для программирования (интерфейс для программирования, картридж памяти, СD диск и USB кабель). □картридж памяти для хранения и копирования программы.

ITM Ikeos

Многофункциональное годичное реле времени

Наименование	Кол-во каналов	№ по каталогу
ITM 4c 6E	4	15270
Картридж памяти		15280

Таймер

- выдержка времени регулируется от 1 с до 10 ч;
- возможность установки временного цикла и дней разрешения на функционирование.

Проблесковое реле

- повторяющаяся выдержка времени при включении и выключении нагрузки с различной продолжительностью, программируемой от 1 до 59 с;
- цикл запускается при подаче напряжения на выключатель Ikeos;
- возможность установки временного цикла и дней разрешения на функционирование;
- возможность соединения условного входа.

Счетчик времени

- учет часов функционирования цепи;
- регулируемый порог: от 1 до 99 999 ч;
- максимальное значение счётчика: 99 999 ч;
- возврат счетчика в нулевое положение.

Счетчик импульсов

- учет импульсов, идущих от датчиков;
- регулируемый порог: от 1 до 999 999;
- максимальное значение счетчика: 999 999 импульсов;
- возврат счетчика в нулевое положение.

Применение

Используется для подачи команд на замыкание и размыкание одной или нескольких независимых цепей по заранее заданной пользователем и сохраненной в памяти уставке времени.

Программирование

- суточное, недельное или годовое (1 цикл = 1 вкл. и 1 откл.);
- копирование рабочего цикла для одного или нескольких дней недели;
- переход на зимнее/летнее время:□ автоматический;
- □ ручной;
- возможность соединения 1 условного входа с каждым выходным каналом;
- возможность принудительного включения выходного канала.
- импульсное программирование с регулируемой длительностью от 1 до 59 с, программируемые на один или несколько дней недели.

Выдержка времени при включении

- выдержка времени запускается при активации выделенного входа;
- включение нагрузки под напряжение происходит по окончании выдержки времени;
- продолжительность выдержки времени программируется от 1 с до 10 ч;
- возможность установки временного цикла и дней разрешения на функционирование.

Выдержка времени при отключении

- выдержка времени запускается при дезактивации выделенного входа;
- отключение нагрузки происходит по окончании выдержки времени;
- продолжительность выдержки
- времени программируется от 1 с до 10 ч; возможность установки временного цикла и дней разрешения на функциони-

Характеристики

рование

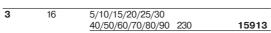
Программирование реле на неделю или на год распределено между 1, 2, 3 или 4 каналами с помощью 6 входов. Перенесение на другой ITM или сохранение установленной программы с помощью картриджа памяти.

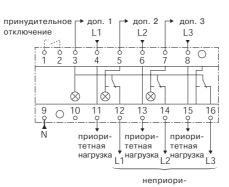
Электрические характеристики

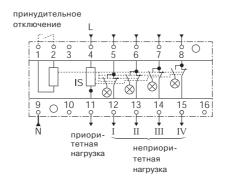
- напряжение: 230 В пер. тока ± 10 %;
- частота: 50 Гц;
- потребление: 4,5 BA;
- сохранение программы и установленного времени при помощи литиевой батареи:
- □ срок годности: 10 лет;
- □ продолжительность работы без питания от сети: 5 лет;
- точность часового механизма:
- □ ±1 с в день при 20 °C;
- ном. ток контактов:
- \Box 10 А при 250 В пер. тока (cos φ =1);
- \Box 6 А при 250 В пер. тока (cos ϕ = 0,6).

Механические характеристики

- ширина: 10 модулей по 9 мм;
- масса: 290 г;
- степень защиты:
- □ передняя панель: ІР40;
- □ клеммы: ІР20;
- рабочая температура: от -5 °C до + 50 °C:
- температура хранения: от 25 °C до + 70 °C;
- аксессуары:
- □ картридж памяти


CDS Реле отключения неприоритетной нагрузки


15908



15913

нагрузка

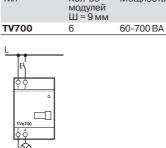
CDSc				
1	16	5/10/15/20/25/30		
		40/45/50/60/75/90	230	15906

Применение

Когда потребление превышает значение выбранного порога отключения, реле отключения неприоритетной нагрузки временно отключает неприоритетную нагрузку.

Реле позволяет:

- увеличить количество нагрузок без изменения выделенной мощности;
- уменьшить потребляемую мощность;
- предотвратить неудобства, связанные с отключением вводного автоматического выключателя.


- ном. токи:
- □ приоритетная нагрузка: 90 А;
- □ неприоритетная нагрузка:
- 15 А (для активной нагрузки, 100000 циклов);
- □ во всех остальных случаях необходимо использовать контакторы СТ;
- частота: 50 60 Гц;
- индикация отключения неприоритетной нагрузки желтым светодиодом.
- потребляемая мощность: 12 Вт;
- присоединение кабеля через клеммы:
- □ приоритетная нагрузка:
- от 4 до 50 мм²;
- □ неприоритетная нагрузка:
- от 2,5 до 10 мм²;
- максимальный ток: 90 A;
- шаг установки порога
- срабатывания: 5 А;
- диапазон рабочих температур: от -5 до +55°C:
- время включения неприоритетной нагрузки после ее отключения:
- □ для первой неприоритетной нагрузки: 5 мин;
- □ для следующей неприоритетной нагрузки: 5 мин после включения предыдущей;
- □ для трехфазного реле отключения неприоритетной нагрузки: нагрузка отключается отдельно по каждой фазе.

TV700, TVe700, TVo1000, Vo1000, TVBo Диммеры

(M3K60699-1-98)

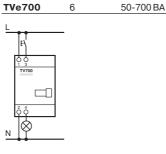
(M3K60669-2-1-96)

Кол-во

Мощность

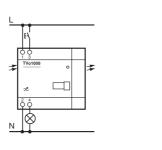
60-1000 BA

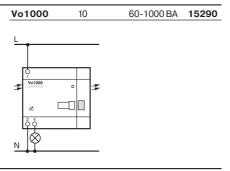
15289

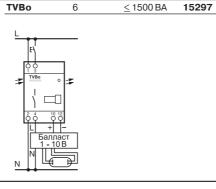

№по

15287

Тип


15287


TVo1000



Применение

Диммеры предназначены для регулировки уровня светимости одной или нескольких ламп мощностью от 50 до 1000Вт.

Гамма диммеров с буквой "о" в названии имеют оптическую связь, что позволяет реализовывать управление без использования проводов и обеспечивает возможность управлять нагрузкой более 1000 Вт с помощью нескольких устройств.

Дополнительные функции

- предустановленный уровень светимости, индикация, поддержание постоянного уровня освещенности, регулировка плавности включения при использовании дополнительных устройств;
- централизованный контроль управлением различными типами ламп;
- передача оптического сигнала слева направо, что обеспечивает возможность управления всеми устройствами с оптической связью, расположенными в один ряд на DIN-рейке, с помощью устройства, расположенного в крайнем левом положении.

- выбор диммера зависит от:
- \square типа ламп и суммарной мощности нагрузки;
- □ требуемых дополнительных функций (предустановленный уровень светимости, индикация, поддержание постоянного уровня освещенности, регулировка плавности включения);
- рабочая температура: от -5 до +50°C (в диапазоне от +30 до +50°C максимальная мощность нагрузки сокращается на 30%).

Типламп		Димм	еры	Диммер	ВЫО	Преднагрузка
		TV700	TVe700	TVo1000		
лампы накал	пивания					
галогенные 230 В	лампы,	-		•	•	
галогенные	лампы,					
12-24B						
	- с электронным					PTV1 ⁽¹⁾
	трансформатором					
	- с универсальным					PTV1 ⁽¹⁾
;	электронным					
-	трансформатором					
	- с ферромагнитны	IM			•	PTV1 ⁽¹⁾
	трансформатором					
люменесцентные лампы						

(1) Для диммеров TVo1000 и Vo1000 преднагрузка при использовании галогенных ламп 12-24 В требуется в следующих случаях:

- трансформатор загружен менее чем на 80% от максимальной мощности;
- нагрузка состоит из одного трансформатора и одной лампы;
- нагрузка менее чем 100 BA.

Выбор дополнительных устройств

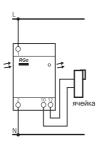
Типламп	Доп. устройства	TVo1000 Vo1000 TVBo	TV700 TVe700
поддержание пост. уровня освещенности	RGo		нет функции
управл. нагрузкой (вкл./откл.) и индикация состояния	ISo		оптической
использование предустанов. уровня светимости	NTVo		СВЯЗИ ДЛЯ
регулировка плавности включения	TTVo		подключения
оптический повторитель	RPo	•	дополнительных устройств

Характеристики

Допустимая мощность	Вт
в соответствии с типом нагрузки	
TV700	
лампы накаливания - галогенные лампы, 230 В	60-700
TVe700	
лампы накаливания - галогенные лампы, 230 В	50-700
галогенные лампы, 12-24 В	
- с ферромагнитным трансформатором	50-550
- с электронным и универсальным трансформатором	50-650
TVo1000/ Vo1000	
лампы накаливания - галогенные лампы, 230 В	60-1000
галогенные лампы, 12-24 В	
- с ферромагнитным трансформатором	60-800
- с электронным и универсальным трансформатором	60-900

TVBo

Максимальное количество люминесцентных ламп (балласт 1-10 В)


Мощность люминесцентной лампы		Кол-во ламп
18Вт	светильник с 1 лампой и 1 ПРА	50
	светильник с 2 лампами и 1 ПРА	40
36 BT	светильник с 1 лампой и 1 ПРА	40
	светильник с 2 лампами и 1 ПРА	20
58 BT	светильник с 1 лампой и 1 ПРА	30
	светильник с 2 лампами и 1 ПРА	15

RGo, ISo, NTVo, TTVo, RPo, PTV1 Дополнительные устройства для диммеров

15291

Тип	Кол-во модулей	№ по каталогу
RGo	6	15291
Датчик освещенности (запасной)		15292

Применение

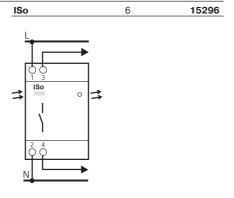
Гамма диммеров и дополнительных устройств с буквой "о" в названии имеют оптическую связь, что позволяет реализовывать управление без использования проводов.

RGo

Регулятор поставляется в комплекте с датчиком освещенности настенного монтажа. Используется для поддержания заранее установленного уровня освещенности в помещении. Регулировка светимости ламп через диммер зависит от уровня естественного освещения помещения.

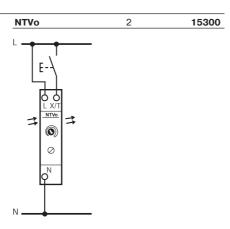
Датчик

Уровень освещенности в помещении можно регулировать от 100 до 1500 Люкс.


- ном. напряжение: 230 В, 50 Гц;
- присоединение: через клеммы
- сечением до 2,5 мм²;
- установка: слева от диммеров TVo, TVBo и Vo;
- три режима работы,

устанавливаемых кнопкой на передней поверхности:

- □ ON регулировка включена;□ OFF регулировка отключена;
- □ режим тестирования;
- поставляется вместе с датчиком освещенности;
- размеры датчика: 61 x 81 x 34 мм.



15296

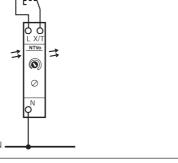
15300

ISo

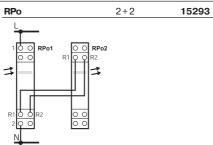
Устройство используется для:

- управления нагрузкой (вкл./откл.);
- индикации состояния диммера.
- ном. напряжение: 230 В, 50 Гц;
- присоединение: через клеммы сечением до 2,5 мм²;
- установка: справа от диммеров TVo, TVBo и Vo;
- минимальная нагрузка: 15 Вт;
- максимальная нагрузка:
- □ для ламп накаливания: 1500 Вт; □ для галогенных ламп и люминисцентных ламп с электронным балластом: 1000 Вт;
- □ количество циклов срабатывания: 20000.

NTVo


Устройство используется для:

- поддержания постоянного предустановленного уровня светимости через управление диммером:
- отключения.
- ном. напряжение: 230 В, 50 Гц;
- присоединение: через клеммы сечением до 2,5 мм²;
- установка: слева от диммеров TVo, TVBo и Vo.


15301

Тип Кол-во №по модулей каталогу TTVo 15301 2

15293

15417

15417 PTV1

TTVo

Устройство для устанавки времени (от 5 с до 1 мин), за которое диммер изменит уровень светимости лампы от минимального до максимального значения. Имеется три режима:

- регулировка времени включения;
- регулировка времени отключения;
- регулировка времени включения и отключения.
- ном. напряжение: 230 В, 50 Гц;
- присоединение: через клеммы сечением до 2,5 мм²;
- установка: слева от диммеров TVo, TVBo и Vo.

RPo

Оптический повторитель, который состоит из двух модулей, RPo1 и RPo2, и используется для передачи оптического сигнала между двумя устройствами, расположенными на разных DIN-рейках в щитке.

- ном. напряжение 230 В, 50 Гц;
- присоединение: через клеммы сечением до 2,5 мм²;
- RPo1 устанавливается в крайнее
- правое положение в одном ряду; Rpo2 устанавливается в крайнее правое положение в другом ряду;
- длина провода между RPo1 и RPo2: не более 3 м.

PTV₁

Преднагрузку PTV1 необходимо обязательно использовать для галогенных ламп 12-24 В, если трансформатор загружен менее чем на 80% от максимальной мощности, или нагрузка состоит из одного трансформатора и одной лампы.

- ном. напряжение: 230 В, 50 Гц;
- присоединение: через клеммы сечением до 2,5 мм².

MIN, MINe, MINs, MINp Регуляторы выдержки времени PRF

Устройство предупреждения об отключении освещения

Применение MIN, MINe, MINs

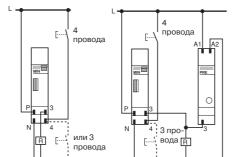
Регуляторы выдержки времени позволяют включать и затем отключать электрические цепи через определенный промежуток времени.

MINp

Регулятор выдержки времени позволяет включать и затем отключать электрические цепи через определенный промежуток времени, а также предупреждать о скором отключении освещения снижением уровня освещенности на 50%.

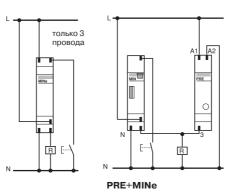
PRE

Устройство применяется в сочетании с регуляторами выдержки времени **15363**, **15231**, **15232** и только для цепей с лампами накаливания и галогенными 230В


(не применяются для цепей с люминесцентными, люминесцентными компактными и галогеновыми слаботочными лампами).

Предупреждает о скором отключении освещения путем снижения уровня освещенности на 50% на 20-60 секунд.

Тип	Напряжение	Кол-во	№ по
	пер. ток (В)	модулей	каталогу
		Ш = 9 мм	


 Регуляторы выдержки времени

 MIN
 230
 2

PRE+MIN

- степень защиты: IP 40;
- рабочая частота: 50-60 Гц;
- присоединение:

□ через зажимы для кабелей сечением не более 6 мм²;

□ 3 или 4 провода с автоматическим переключением коммутаций.

Характеристики

- выбор режима работы, при помощи переключателя на передней панели:
- функция регулятора выдержки времени от 1 до 7 мин;

□ автоматический режим:

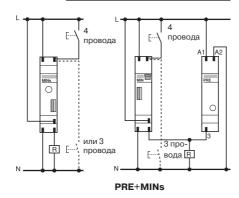
- регулировка зубчатым колесиком с шагом 15 с;
- нажатие на пусковую кнопку увеличивает продолжительность выдержки времени;
- □ усиленный режим:
- постоянно включенное освещение;
- потребление:
- □ при работе: 1,1 ВА;
- □ при пуске: 200 ВА.
- цепь управления:
- \square ном. ток контакта: 16 A, $\cos \varphi = 1$;
- □ максимальная мощность:
- при освещении лампами накаливания или галогеновыми низковольтными (230 В) лампами: 2000 Вт;
- П пусковые кнопки с подсветкой: если потребление превышает 50 мА, защита отключает регулятор выдержки времени;
- предупреждение об отключении освещения:
- □ отсутствует: **15376**.

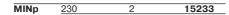
MINe

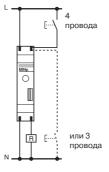
15363

- выбор режима работы:
- □ импульсный сигнал продолжительностью до 2 с включает освещение на 3 мин;
- □ импульсный сигнал продолжительностью более 2 с включает освещение на 20 мин;
- □ нажатие на кнопку пуска уменьшает продолжительность выдержки времени;
- □ потребление: < 5 ВА; ■ цепь управления:
- □ не под напряжением;
- \square ном. ток контакта: 4,5 A, $\cos \varphi$ = 1;
- □ максимальная требуемая мощность: при освещении лампами накаливания или галогеновыми низковольтными (230 В) лампами: 1000 Вт:
- освещение люминесцентыми лампами, подключенными параллельно: 70 ВА (9 μΦ);
- освещение люминесцентыми лампами, подключенными последовательно: 500 BA;
- освещение duo люминесцентыми лампами: 500 BA;
- □ потребление светящихся пусковых кнопок: до 15 мА;
- предупреждение об отключении освещения:
- □ отсутствует: **15376** (PRE).

MINS


■ выбор режима функционирования, при помощи переключателя на передней панели:


□ автоматический режим:


- функция регулятора выдержки времени от 30 с до 8 мин;
- регулировка зубчатым колесиком с шагом 30 с;
- □ усиленный режим:
- постоянно включенное освещение;
- нажатие на кнопку пуска уменьшает продолжительность выдержки времени.
 □ импульсный сигнал в течение 2 с включает освещение, в соответствии с установленной выдержкой времени;
 □ импульсный сигнал в течение 2 с включает освещение на 20 мин;
- потребление: < 5 BA;
- цепь управления:
- □ не под напряжением;
- □ номинальная интенсивность:
- 9 A, $\cos \varphi = 1$;
- □ максимальная мощность:

Тип	Напряжение	Кол-во	№ по
	пер. ток (В)	модулей	каталогу
		Ш = 9 мм	

Дополнительное устройство					
PRE	230	2	15376		

Аксессуары

специальная клеммная заглушка для MIN до 100 с;

Павтоматический режим без функции предупреждения:

— функции получатора выпрожим

при освещении лампами накаливания

или галогеновыми низковольтными

при освещении люминесцентыми

- при освещении люминесцентыми

□ потребление пусковых кнопок с

■ предупреждение об отключении

□ отсутствует: **15376** (PRE).

лампами, подключенными параллельно:

- при освещении duo люминесцентыми

■ выбор режима функционирования при

помощи переключателя на передней

□ автоматический режим с функцией

- регулировка зубчатым колесиком с

- встроенная функция предупреждения об отключении освещения с понижением

светового потока на 50% в течение от 10

- функция регулятора выдержки времени от 30 с до 8 мин;

(230 В) лампами: 2000 Вт;

лампами, подключенными

последовательно: 1000 ВА;

120 BA (9 μΦ);

лампами: 1000 ВА;

освещения:

MINp

панели:

предупреждения:

шагом 30 с;

подсветкой: до 100 мА;

- функция регулятора выдержки времени от 30 с до 8 мин;
- переключатель функции предупреждения об отключении освещения находится в положении "Выкл." (OFF); □ усиленный режим;
- постоянно включенное освещение;
- нажатие на кнопку пуска уменьшает продолжительность выдержки времени.
- 2 способа управления:
- □ импульсный сигнал продолжительностью до 2 с включает освещение, в соответствии с установленной выдержкой времени;
- □ импульсный сигнал продолжительностью более 2 с включает освещение на 20 минут;
- потребление: < 5 ВА;</p>
- цепь управления:
- □ не под напряжением;
- □ ном. ток контактов: 3 A, соs φ = 1; □ максимальная требуемая мощность: 600 Вт (при освещении лампами
- накаливания или галогеновыми низковольтными (230 В) лампами);
- не совместим с люминесцентными трубками, компактными люминесцентными и галогеновыми низковольтными (230 В) лампами;

 □ потребление пусковых кнопок с подсветкой: до 100 мА.

PRE

15359

- максимальная мощность: 2000 Вт только при освещении лампами накаливания и галогенными 230 В;
- не совместим с люминесцентными трубками, компактными люминесцентными и галогеновыми слаботочными лампами;
- питание: 230 B ± 10 %.

IC50, IC200, IC2000 Сумеречные выключатели

Применение

Подача сигнала на замыкание или размыкание цепи при снижении уровня освещенности ниже установленного. Возврат состояния контакта в исходное положение при повышении освещенности выше установленного значения.

Характеристики

IC50

- ■напряжение: 230B
- ■частота: 50 Гц
- ■потребление: 2,2 ВА
- ■порог освещенности: от 2 до 50 Люкс
- ■фотоэлемент: настенного типа (реф. 15268), IP54, входит в комплект
- ■максимальная длина кабеля фотоэлемента: 25 м
- ■степень защиты IC50: IP20

- ■время задержки при замыкании/размыкании цепи: 10 с
- ■индикация: светодиодом при снижении уровня освещенности ниже установленного значения (без учета времени задержки)
- ■присоединение: винтовые зажимы для кабелей сечением до $6\,\mathrm{mm}^2$
- ■номинальный ток контакта:
- □ 10 A 250 B/50 Гц, соѕφ=1 (резистивная нагрузка)

□2 A – 250 В/50 Гц, (индуктивная нагрузка) □рабочая температура: -10 °С...+40 °С

IC50

Характеристики

IC200

- ■напряжение: 230В (+10%, -15%)
- ■частота: 50/60 Гц
- ■потребление: 3 BA
- ■порог освещенности: от 2 до 200 Люкс
- ■фотоэлемент: монтаж на переднюю панель (реф. 15281), IP65, входит в комплект
- ■время задержки при замыкании/размыкании цепи: ≥40 с
- ■индикация: светодиодом при снижении

уровня освещенности ниже установленного значения (без учета времени задержки)

- ■присоединение: винтовые зажимы для кабелей сечением до 6 мм
- ■номинальный ток контакта:
- \Box 10 A 250 B/50 Гц, $\cos \varphi$ =1 (резистивная нагрузка)
- $\Box 6 \, A 250 \, B/50 \, \Gamma$ ц, $\cos \phi = 0,6$ (индуктивная нагрузка)
- ■карман для инструкции под прозрачной передней панелью
- ■рабочая температура: -10 °C...+50 °C

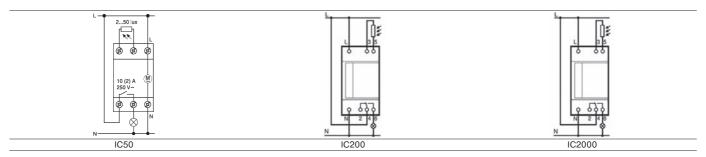
IC200

Характеристики

102000

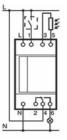
- ■напряжение: 230В (+10%, -15%)
- ■частота: 50/60 Гц
- ■потребление: 6 ВА
- ■порог освещенности: от 2 до 2000 Люкс
- ■фотоэлемент: настенного типа (реф. ССТ15268), IP54, входит в комплект
- ■максимальная длина кабеля фотоэлемента: 100 м
- ■степень защиты: IP20B
- ■время задержки при замыкании/размыкании цепи: 60 с
- ■индикация:

□светодиодом красного цвета при снижении уровня освещенности ниже установленного значения (без учета времени задержки)


□светодиодом зеленого цвета при срабатывании на замыкание

- ■тестовая кнопка на передней панели
- ■присоединение: два безвинтовых зажима на полюс для кабелей сечением до 2,5 мм²
- ■номинальный ток контакта:
- \Box 16 A 250 B/50 Гц, $\cos \varphi$ =1 (резистивная нагрузка)
- \Box 10 A 250 B/50 Гц, $\cos \phi$ =0,6 (индуктивная нагрузка)
- ■карман для инструкции под прозрачной передней панелью
- ■рабочая температура: -25 °C...+55 °C

Тип	Кол-во модулей Ш=9мм	№ по каталогу
IC50	4	15267
IC200	5	15284
102000	5	CCT15368


Подключение

IC2000P+

Сумеречный выключатель

Применение

Подача сигнала на замыкание или размыкание цепи в зависимости от уровня освещенности и установленного времени. Объединяет функции сумеречного выключателя ІС и программируемого одноканального реле времени.

Описание

ІС2000Р+ управляет цепью освещения с

■3-х предустановленных программ:

□«DAYPROG»: программа времени включения функции ІС в период с 7:00 до 20:00 □ «NIGHTPROG»: программа времени включения функции ІС в период с 5:00 до 8:00 и с 18:00 до 23:00

□«EMPTYPROG»: программа без установки времени включения функции ІС. Эта программа может быть сконфигурирована оператором.

■установленными оператором временными периодами, с возможностью копирования функции в другой день. Этот режим предусматривает функции:

□использования периода (праздники, отпуск и др.)

□дистанционное приоритетное управление с помощью сигнала на вход от внешнего НО контакта

□возможность перехода на «летнее/зимнее» время в ручном или автоматическом

□постоянное отображение на ЖК дисплее: текущего времени, дня недели, текущей программы и состояние контакта.

Характеристики

- ■напряжение: 230В (+10%, -15%)
- ■частота: 50/60 Гц
- ■потребление: 3 ВА
- ■три порога освещенности:

□от 2 до 50 Люкс □от 60 до 300 Люкс

□от 350 до 2100 Люкс

- ■фотоэлемент: настенного типа (реф. 15268), IP54, входит в комплект
- ■максимальная длина кабеля фотоэлемента: 100 м
- ∎степень защиты IC2000P+: IP20B
- ■время задержки при замыкании/размыкании цепи: устанавливается от 20 до 140 с (по умолчанию – 80 с)
- ■количество ячеек памяти: 42
- ■точность настройки: 1 мин.
- ■погрешность срабатывания: < ± 1 с/сутки при 20°C
- ■хранение программы и установленного времени с помощью литиевой батареи запас хода: 5-6 лет
- ■подсветка экрана нажатием на кнопку (отключение подсветки через 5 мин.)
- ■присоединение: винтовые зажимы для кабелей сечением до 6 мм
- ■номинальный ток контакта:

 \Box 16 A – 250 B/50 Гц, $\cos \varphi$ =1 (резистивная нагрузка)

 \Box 10 A - 250 B/50 Гц, $\cos \varphi$ = 0,6 (индуктивная нагрузка)

- ■карман для инструкции под прозрачной передней панелью
- ■рабочая температура: -20 °C...+50 °C
- ■характеристики входа:

□напряжение: 230В (+10%, -15%)

□частота: 50/60 Гц

□максимальный ток: 2,5 мА

□максимальное потребление: 0,4 мВт □максимальная длина кабеля: 100 м

Тип	Кол-во модулей Ш=9мм	№ по каталогу
IC2000P+	5	15483

Фотоэлементы для сумеречных выключателей

15268

CCT 15268

15281

Настенный фотоэлемент (15268)

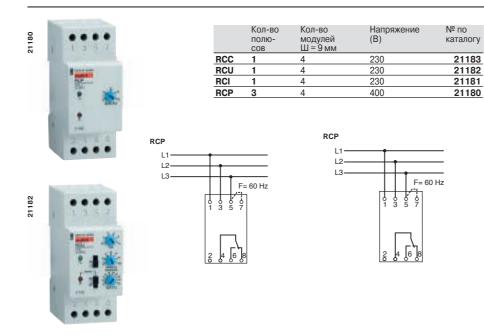
(поставляется с крепежными элементами)

- ■присоединение: двойным кабелем в двойной изоляции (не прокладывать вместе с силовым кабелем)
- ■степень защиты: IP54, IK05
- ■рабочая температура: -40 °C...+70 °C

Настенный фотоэлемент (ССТ15268)

(поставляется с крепежными элементами)

- ■присоединение: двойным кабелем в двойной изоляции (не прокладывать вместе с силовым кабелем)
- **■**степень защиты: IP54, IK05
- ■рабочая температура: -40 °C...+70 °C


Фотоэлемент с монтажом на переднюю панель

(поставляется с крепежными элементами)

- ■поставляется с кабелем длиной 1 м
- **■**степень защиты: IP65
- ■рабочая температура: -40 °C...+70 °C

Фотоэлемент	№ по каталогу
Монтаж на переднюю панель, IP65	15281
Настенный, IP54	15268
Настенный, IP54 (совместим со всеми выключателями)	CCT15268

RCC, RCU, RCI, RCP Реле контроля и защиты

Реле контроля фаз RCP 21180

Применение

Предназначен для защиты 3-х фазного электрооборудования от потери фазы, неправильного порядка чередования фаз или реверса, а также от небаланса фаз в указанном диапазоне.

Характеристики

- установка небаланса от 5 до 25% по всем 3-м фазам;
- выдержка времени на срабатывание 0,3 секунды;
- визуальную индикацию сети и отклонений;
- управление через коммутирующие контакты любым видом нагрузки до 8А;

Реле контроля оперативного тока RCI 21181

Применение

Предназначен для защиты электрооборудования от недопустимого понижения или повышения оперативного тока в автоматическом или полуавтоматическом режимах. Для схем защиты оборудования и продукции при выходе со строя ТЭНов и важных систем, а также защиты ЭД от затянувшегося пуска или заклинивания.

Характеристики

- контроль токов от 0,15A до 10A с возможностью использования трансформаторов тока;
- уставка предела отклонения от 5 до 50% от номинала;
- выдержка времени на срабатывание от 0 до 10 секунд;
- функции памяти повреждения, а также

Реле контроля

пуска компрессора RCC 21183

Применение

Контролирует электропитание кондиционера, при отключении или снижении напряжения блокирует немедленный повторный пуск компрессора через контактор.

Характеристики

- питание: 230 В, 50-60 Гц;
- максимальное потребление: 3 ВА;
- контролируемое напряжение: 230 В пер. тока ±15%, 50-60 Гц;
- регулирование уставки срабатывания: ±(5-15%) ном. напряжения:
- время срабатывания: 200 мс;
- сигнализация светодиодом на передней панели (светится при отсутствии повреждений);
- номинальный ток контакта: 10 A/250 B, $\cos \varphi = 1$; 6 A/250 B, $\cos \varphi = 0.6$;
- присоединение: через зажимы для кабеля сечением до 2,5 мм².

Реле контроля напряжения RCU 21182

Применение

Предназначен для защиты электрооборудования от недопустимого понижения или повышения напряжения в автоматическом или полуавтоматическом режимах, а так же для обеспечения непрерывности электроснабжения. Такие реле постоянно используются в схемах с автоматическим и полуавтоматическим восстановлением питания.

Характеристики

- контроль напряжения от 10 до 500 В переменного или постоянного тока;
- уставка предела отклонения от 5 до 50% от номинала;
- уставка выдержки времени на срабатывание от 0 до 10 сек.;
- функции памяти повреждения (режим ожидания команды на включение нагрузки либо полностью автоматический режим);
- точная настройка параметров без применения измерительных приборов и трансформаторов тока;
- визуальную индикацию сети и отклонений;
- управление через коммутирующие контакты любым видом нагрузки до 8 А (контакторы, независимые расцепители, контроллеры или устройства сигнализации);

VLT 72 × 72, **AMP** 72 × 72,

CMV 48 x 48, **CMA** 48 x 48

Щитовые приборы и приборы на DIN-рейку

Напряжение	Частота	№ по	
(B)	(Гц)	каталогу	
VLT		щитовые	
0-500	50/60	16005	16061
AMP		_	
	базовый прибо		
X/5	50/60	16004	16030
1, Зшкала	отношение		
	50/5	16009	16032
	100/5	16010	16034
	200/5	16011	16036
	400/5	16012	16039
	600/5	16013	16041
	1000/5	16014	16043
	1250/5	16015	
	1500/5	16016	16044
	2000/5	16019	16045
AMP			
базовый приб	бор без шкалы		
X/5	50/60	16003	
3,0 шкала дл	я двигателей		
	30/5	16006	
	75/5	16007	
	200/5	16008	
вольтметр ан	алог. 0-300В на	DIN 16060	
	ог. 30А на DIN	16029	

Вольтметры VLT и амперметры AMP

Технические характеристики

- диапазон рабочих температур: от -25 до +50°C;
- хранение: при t от -40 до +80 °C;
- приборы ферромагнитной системы, класс точности 1,5;
- выдерживаемое импульсное напряжение 1,2/50 мкс: 5 кВ;
- сопротивление изоляции: 3 кВ, 50 Гц, 1 МО;
- расположение: угол отклонения от вертикали 30°;
- монтаж в щите:
- размер шкалы 90°: 62 мм;
- сменные шкалы для амперметра;
- амперметр с соотношением 5 A;
- потребление: AMP-1,1 BA, VLT 3 BA;
- допустимая перегрузка 20 %;
- ширина приборов на DIN рейку 72 мм.

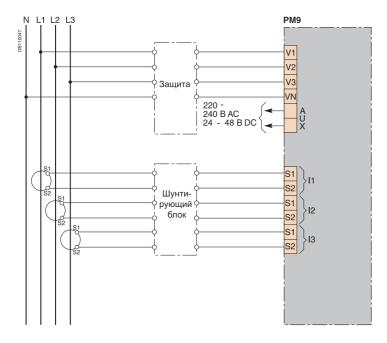
Напряжение (В)	№ по
	каталогу
500	16018
Ном.	№ по
ток (А)	каталогу
20	16017
	500 Ном. ток (A)

Переключатель амперметров СМА Переключатель вольтметра СМV

Технические характеристики

- коммутационная износостойкость 100 000 циклов B/O;
- механическая износостойкость
- угол 90°: 1 000 000 циклов В/О;
- угол 45°: 500 000 циклов B/O;
- контакт из серебра/никеля;
- диапазон рабочих температур:
- от -25°C до +50°C;
- сопротивление изоляции:
- 2,5 кВ 50 Гц 1 мин;
- выдерживаемое импульсное напряжение: 1,2/50 мкс: 5 кВ.

Цифровые приборы на DIN рейку


Тип	Параметр модулей	Кол-во	№ по каталогу		
Амперметр АМР	0-10A	4	15202		
Амперметр АМР	0-5000A	4	15209		
Вольтметр VLT	0-600B	4	15201		
Частотомер FRE	20-100 Гц	4	15208		
Мультиметр РМ9 - см. следующую страницу					

- Калибровка приборов с лицевой панели:
- Работа с трансформаторами тока или напрямую.

PM9 Мультиметр

Тип	Напр. питания (В пер. тока)	Кол-во модулей Ш = 9 мм	№ по каталогу
РМ9	230	8	15196

Применение

Цифровой универсальный измерительный прибор, подключаемый к трансформаторам тока (не входят в комплект поставки) и позволяющий отображать характеристики трехфазной сети с наличием или отсутствием нейтрали. Отображает для каждой фазы или для совокупности электроустановок следующие величины:

- напряжение;
- ток;
- активную, реактивную и полную мощность;
- коэффициент мощности;
- сдвиг фаз между напряжением и током:
- активную и реактивную энергию;
- частоту.

Характеристики

- напряжение питания:
- 230 В пер. тока ± 10%;
- максимальное измеренное напряжение без трансформатора напряжения: 3 х 400 В пер. тока (рмс);
- рабочая частота: 50-60 Гц;
- индикатор LCD с подсветкой:
- □ 3 группы цифр по 3 в каждой, отражающие:
- тип текущего измерения;
- измеряемую фазу;
- единицы измерения: М, к, Вт, ч, В, А, Вар, Гц, ф;
- ток трансформатора тока (TI):
- □ в первичной обмотке: 1-9999 А; □ во вторичной обмотке: постоянно 5 А;
- напряжение трансформатора
- напряжения:
- □ первичной обмотки: 1-9999 В;
- □ вторичной обмотки: постоянно 230 В;
- класс точности:
- □ напряжение: 0,5 %;
- □ ток: 0,5 %;
- активная энергия: класс 2 в соответствии с МЭК- EN 61036;
- Реактивная энергия: класс 3 в соответствии с MЭK- EN 61268;
- максимальное потребление: 2 ВА;
- потребление каждого входа для измерений: 0,55 ВА;
- рабочая температура:
- от -5 °C до +55 °C;
- температура хранения:
- от -40 °C до +85 °C;
- присоединение: через зажимы для кабелей 2 x 2,5 мм².

ME/MEr/MErt

Счетчики активной электроэнергии

17066

17076

17072

Наименование	Ток (А)	Количество модулей Ш=9 мм	№ по каталогу
ME1	63	4	17065
ME1z	63	4	17066
ME1zr	63	4	17067
ME3	63	8	17075
ME3zr	63	8	17076
ME4	63	8	17070
ME4zr	63	8	17071
ME4zrt	40-6000	8	17072

Применение

Цифровые счетчики предназначены для измерения активной электроэнергии, потребляемой одно- или трехфазной цепью с или без нейтрали.

Общие характеристики

- ■класс точности: 1 (МЭК 62053-21).
- ■частота: 48/62 Гц.
- ■потребление: 2,5 BA.
- ■рабочая температура: -25...+55 C.
- ■присоединение посредством туннельных клемм:

□проводом до 6 мм² для верхних клемм □проводом до 16 мм² для нижних клемм.

- ■индикатор желтого цвета.
- ■соответствие стандарту: МЭК 61557-12.
- ■пломбировочная крышка (кроме ME4zrt).

Особые характеристики

МЕ1 однофазный счетчик:

- ■напряжение: 230±20 В.
- ■прямые измерения: до 63А.
- ■индикация: 1000 импульсов/1 кВтч.
- ■индикатор ошибки подключения.
- ■полные измерения: 999,99 МВтч.
- ■дисплей: 5 цифрвкВтчили МВтч (безточки) - в кВтч, две цифры после точки - в МВтч).

МЕ1z однофазный счетчик с частичным измерением:

- ■напряжение: 230±20 В.
- ■прямые измерения: до 63A.
- ■индикация: 1000 импульсов/1 кВтч.
- ■индикатор ошибки подключения.
- ■полные измерения: 999,99 МВтч.
- ■дисплей: 5 цифрвкВтчили МВтч (безточки – в кВтч, две цифры после точки – в МВтч).
- ■частичные измерения с функцией сброса: □99.99 МВтч

□4 цифры в кВтч или МВтч (без точки – в кВтч, две цифры после точки – в МВтч).

ME1zr однофазный счетчик с частичным измерением и дистанционной передачей импульсов:

- ■напряжение: 230±20 В.
- ■прямые измерения: до 63A.
- ■индикация: 1000 импульсов/1 кВтч.
- ■индикатор ошибки подключения.
- ■полные измерения: 999,99 МВтч.
- ■дисплей: 5 цифрвкВтчили МВтч (безточки) - в кВтч, две цифры после точки - в МВтч).
- ■частичные измерения с функцией сброса: □99,99 МВтч

□4 цифры в кВтч или МВтч (без точки – в кВтч, две цифры после точки – в МВтч).

■дистанционная передача данных НО импульсным контактом:

□напряжение изоляции: 4 кВ, 50 Гц

□ 18 MA/24 B DC, 100 MA/230 B AC □ 1 импульс длительностью 200 мс (закрытие контакта) на 1 кВтч.

МЕЗ трехфазный счетчик без нейтрали:

- ■напряжение: 3x230/400±20 В.
- ■прямые измерения: до 63А.
- ■индикация: 100 импульсов/1 кВтч.
- ■полные измерения: 999,99 МВтч.
- дисплей: 5 цифрвкВтчили МВтч (безточки) – в кВтч, две цифры после точки – в МВтч).

ME3zr трехфазный счетчик без нейтрали с частичным измерением и

- дистанционной передачей данных:
- напряжение: 3x230/400±20 В.
- ■прямые измерения: до 63А. ■индикация: 100 импульсов/1 кВтч
- ■полные измерения: 999,99 МВтч.

- ■дисплей: 5 цифрвкВтчилиМВтч (безточки - в кВтч, две цифры после точки - в МВтч).
- ■частичные измерения с функцией сброса: □99,99 МВтч

□4 цифры в кВтч или МВтч (без точки – в кВтч, две цифры после точки – в МВтч).

■дистанционная передача данных НО импульсным контактом:

□напряжение изоляции: 4 кВ. 50 Гц □ 18 MA/24 B DC, 100 MA/230 B AC

■1 импульс длительностью 200 мс (закрытие контакта) на 10 кВтч.

МЕ4 трехфазный счетчик с нейтралью:

- ■напряжение: 3x230/400±20 В.
- ■прямые измерения: до 63А.
- ■индикация: 100 импульсов/1 кВтч.
- ■полные измерения: 999,99 МВтч.
- ■дисплей: 5 цифрвкВтчилиМВтч (безточки - в кВтч, две цифры после точки - в МВтч).

ME4zr трехфазный счетчик с нейтралью, частичным измерением и дистанционной передачей данных:

- ■напряжение: 3x230/400±20 В.
- ■прямые измерения: до 63А.
- ■индикация: 100 импульсов/1 кВтч.
- ■полные измерения: 999,99 МВтч.
- ■дисплей: 5 цифр в кВтч или МВтч (без точки -вкВтч, двецифрыпослеточки-вМВтч). частичные измерения по с функцией сброса: □99,99 МВтч

□4 цифры в кВтч или МВтч (одна цифра после точки - в кВтч).

■дистанционная передача данных НО импульсным контактом:

□напряжение изоляции: 4 кВ, 50 Гц □ 18 MA/24 B DC, 100 MA/230 B AC

□ 1 импульс длительностью 200 мс (закрытие контакта) на 10 кВтч.

ME4zrt трехфазный счетчик с или без нейтрали, с использованием внешних трансформаторов тока (в поставку не входят), с частичным измерением и дистанционной передачей данных:

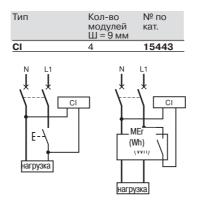
- ■напряжение: 3x230/400±20 В.
- ■измерения с использованием трансформаторов тока: от 40/5 до 6000/5.
- ■индикация: 10000/х импульсов/1 кВтч (где х – первичный ток трансформатора тока).
- ■полные измерения:

□999,99 МВтч – если ток трансформатора тока ≤150 А

□9999,9 МВтч – если ток трансформатора тока > 150 А.

- ■дисплей: 5 цифрвкВтчили МВтч (безточки - в кВтч, две цифры после точки - в МВтч).
- частичные измерения с функцией сбро-

□99,99 МВтч - если ток трансформатора тока ≤ 150 А

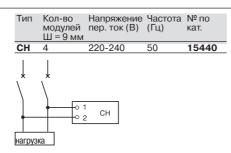

□ 999,99 МВтч – если ток трансформатора

- тока > 150 А □ 4 цифры в кВтч или МВтч (одна цифра
- после точки в кВтч). ■ дистанционная передача данных НО
- импульсным контактом:
- 🛮 напряжение изоляции: 4 кВ, 50 Гц
- □ 18 мА/24 В DC, 100 мА/230 В АС
- □ 10/х импульсов длительностью 200 мс (закрытие контакта) на 1 кВтч, либо х/10 кВтч на импульс (где х - первичный ток трансформатора тока).

СІ Счетчик импульсов СН

Счетчик моторчасов

Счетчик импульсов CI


Применение

Электромеханический счетчик предназначен для учета импульсов, передаваемых датчиками счетчика активной электроэнергии МЕг, счетчика перегрева, скорости и т.п. Он показывает сумму поступивших импульсов. Нечувствителен к отключениям сети.

Характеристики

- напряжение питания и импульсов: 230 В пер. тока;
- потребление: 1,3 BA;
- присоединение: через зажимы для кабеля сечением до 2,5 мм²;
- максимальная величина индикации: 999 999 импульсов.

Счетчик моторчасов СН

Применение

Используется для учета времени работы цепи (двигатели, станки, регуляторы и т.д.).

- устанавливается на вводе в электроприемник после коммутационного аппарата;
- величина измеряемого времени: 99 999,999 ч;
- присоединение: через зажимы для кабеля сечением до $2,5~\text{мm}^2$.

TI

Трансформаторы тока

16453

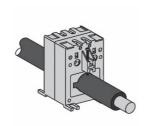
16462

16542

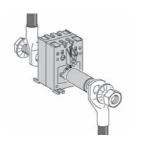
16453+16550

16552 16553

Применение

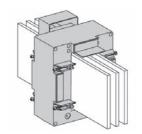

Трансформаторы тока с кратностью Ip/5 преобразовывают в ток вторичной обмотки в пределах от 0 до 5А пропорциональное значение тока первичной обмотки Ip. Существует два основных исполнения:

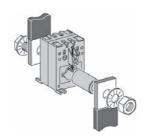
- кабельные трансформаторы тока
- шинные трансформаторы тока.


Используются с измерительными приборами (электросчетчиками, амперметрами), ограничителями потребляемой мощности, реле управления и др.

Подключение

TI трансформаторы тока, одеваемые на проводник




ТІ трансформаторы тока с креплением к проводнику с помощью винтов и гаек (использование цилиндров 16550 или 16551)

Общие характеристики

- ток вторичной обмотки: 5А.
- максимальное рабочее напряжение Ue: 720B.
- частота: 50/60 Гц.
- коэффициент безопасности (fs):
- $_{\Box}$ 40 4000A: fs \leq 5
- $_{\square}$ 5000 6000A: fs \leq 10.
- степень защиты: IP20.
- тропическое исполнение: $-25...+60~^{0}$ С, при относительной влажности >95%.
- соответствие стандартам: МЭК 60044-1 и VDE 0414

Трансформаторы тока

		Мощность, (BA)	Изолир	. кабель:	_			№ покаталогу	/
Кратность Ір/5		Класс точно		— max∅ ⁽¹⁾ (мм)	тах сечение ⁽¹⁾	Размеры проема для шины (мм)	Масса (г)	TI	Цилиндр ⁽²⁾	Пломбир крышка
404	0,5	1,0	3,0	0.4	(MM ²)		000	40500	40550(2)	·
10A	-	-	1	21	120	-	200	16500	16550 ⁽³⁾	+
0A	-	1,25	1,5	21	120	-	200	16451	16550	+
75A	-	1,5	2,5	21	120	-	200	16452	16550	+
100A	2	2,5	3,5	21	120	-	200	16453	16550	+
125A	2,5	3,5	4	21	120	-	200	16454	16550	+
150A	3	4	5	21	120	-	200	16455	16550	+
	1,5	5,5	6,5	22	150	30x10	270	16459	16551 ⁽⁴⁾	16552
200A	4	5,5	6	21	120	-	200	16456	16550	+
	4	7	8,5	22	150	30x10	270	16460	16551	16552
	-	2	5	-	-	65x32	600	16476	-	+
250A	6	9	11	22	150	30x10	270	16461	16551	16552
	2,5	5	8	35	240	40x10	430	16468	-	16553
	1	4	6	-	-	65x32	600	16477	-	+
800A	7,5	11	13,5	22	150	30x10	270	16462	16551	16552
	4	8	12	35	240	40x10	430	16469	-	16553
	1,5	6	7	-	-	65x32	600	16478	-	+
-00A	10,5	15	18	22	150	30x10	270	16463	16551	16552
	8	12	15	35	240	40x10	430	16470	-	16553
	4	8	10	-	-	65x32	600	16479	-	+
600A	12	18	22	22	150	30x10	270	16464	16551	16552
	10	12	15	35	240	40x10	430	16471	-	16553
	2	4	6	-	-	64x11 51x31	500	16473	-	+
	8	10	12	-	-	65x32	600	16480	-	+
600A	14,5	21,5	26	22	150	30x10	270	16465	16551	16552
	4	6	8	-	-	64x1151x31	500	16474	-	+
	8	12	15	-	-	65x32	600	16481	-	+
300A	12	15	20	-	-	65x32	600	16482	-	+
000A	15	20	25	-	-	65x32	600	16483	_	+
250A	15	20	25	-	-	65x32	600	16534	_	+
	12	15	20	-	-	84x34	700	16537	-	+
	8	12	-	-	-	127x38	1500	16540	_	+
500A	20	25	30	-	_	65x32	600	16535	_	+
	15	20	25	-	-	84x34	700	16538	-	+
	10	15	-	_	_	127x38	1000	16541	-	+
2000A	15	20	_	-	-	127x38	1000	16542	-	+
2500A	20	25	-		-	127x38	1000	16543		+
.000A	30	50	60		-	127x50	1300	16545		+
000A	25	30	-		-	127x38	1000	16544		+
JUUUA	40	60	60		-	127x50	1300	16546		+
A0004	50	60	60	-	-	127x52 127x52	1300	16547	-	+
000A 5000A	60	120	-	-	-	165x55	5000	16548		+
				-					-	+
A000	70	120	-	-	-	165x55	5000	16549	-	т

⁽¹⁾ Кабель, на который одевается трансформатор тока ТІ (2) Для трансформаторов тока с креплением болтом и гайкой (3) Цилиндр с внутренним диаметром 8,5 мм, L=32 мм (4) Цилиндр с внутренним диаметром 12,5 мм, L=62 мм

Крепление

TI	Адаі DIN рейка	птер для: Монтажная плата	Изолированные винты
1645116456			-
1645916471			
16473 и 16474	-		
1647616483	-	-	
1650016506			-
1650916521			
16523 и 16524	-		
1652616549	-	-	•

Трансформаторы тока

Выбор трансформаторов тока

Выбор трансформаторов тока зависит от двух критериев:

- ■кратность Ір/5 А
- ■тип монтажа.

Кратность Ір/5 А

Рекомендуется выбирать трансформаторы тока с первичным током выше измеряемого (In).

Пример: In=1103 A; трансформатор тока = 1250/5.

Для небольших первичных токов от 40A до 75A и при применении цифровых измерительных приборов рекомендуется использовать большую кратность, например 100/5, т. к. это повысит точность измерения

Тип монтажа

Выбор типа трансформатора тока зависит от вида его монтажа:

- ■изолированным кабелем
- ■установка на шину.

Меры предосторожности

Не оставлять разомкнутыми клеммы вторичной обмотки трансформатора тока при наличии первичного тока. Перед демонтажем измерительных приборов, цепь вторичной обмотки трансформатора тока необходимо замкнуть накоротко.

Определение класса точности трансформаторов тока TI

Класс точности трансформаторов тока зависит от их мощности (ВА) и потребляемой мощности измерительной системы (потребления всех измерительных приборов системы с учетом кабелей). Мощность потребления измерительной системы не должна превышать мощность трансформатора тока.

Сечение медного кабеля, (мм²)	Мощность 1-го метра двойного кабеля при 20 °C, (BA)
1	1
1,5	0,685
2,5	0,41
4	0,254
6	0,169
10	0,0975
16	0,062

Значение потребляемой мощности кабеля увеличивается на 4% на каждые 10 °C увеличения температуры.

Измерительное устройство	Потребление токовых входов, (BA)
Амперметр 72х72/96х96	1,1
Аналоговый амперметр	1,1
ІМ100 цифровой амперметр	0,5
Цифровой амперметр	0,3
PM500, PM700, PM800, CM3000, CM4000	0,15
ME4zrt	0,05
РМ9	0,55

Пример: потребление измерительной системы при $20\,^{0}$ C

PM9	0,55 BA
4 м двойного кабеля сечением 2,5 мм ²	+1,64 BA
Потребляемая мощность системы	= 2,19 BA

В соответствии с результатом, определяем класс точности трансформаторов тока (см. предыдущую стр.):

- ■класс точности 3 для трансформатора 75/5
- ■класс точности 1 для трансформатора 100/5
- ■класс точности 0,5 для трансформатора 125/5.

Розетки для установки на DIN-рейку

15307

15310

15324

15303

15312

Тип				Кол-во модулей Ш=9мм	Ном. ток (A)	№по каталогу
Розетки на токи до 16 А	4					
Розетка с		2P +E		5	16	15306
белой передней		2P +E+		5	16	15307
поверхностью		Индика	Торная			
		лампа				
5		00.5			40	45004
Розетка с красной передней поверхностью	W.	2P +E		5	16	15324
	_	0D.E			10	45040
Розетка,	V _E	2P+E 2P+F+	- (•"•) —	5	16	15310
соответствующая немецкому стандарту	=	2Р+Е+ Индика лампа	\sim	5	16	15035
_	T)					
Розетка, (соответствующая итальянскому стандарту	1)	2P +E	$\bullet \bullet \bullet$	5	16	15303
Розетки на токи до 20 А	^					
Розетка с	•	2P +E	<u></u>	8	20	15311
белой передней поверхностью		3P +E	•	8	20	15312
		3P+N+	E 🔝	8	20	15313
		SP+N+		0	20	15313

Применение

Розетки на токи до 16 А

Предназначены для подключения потребителей напряжением 220 В.

Розетки на токи до 20 А

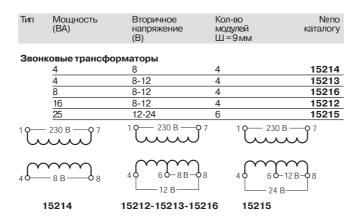
Предназначены для подключения потребителей напряжением 220/380 В.

Характеристики

Розетки на токи до 16 А

- ном. напряжение: 230 В;
- установка: на симметричную DIN-рейку;
- присоединение: через зажимы для гибкого кабеля сечением до 6 мм² или жесткого кабеля сечением до 10 мм²;
- время работы индикаторной лампы: 100000 ч.

Розетки на токи до 20 А


- ном. напряжение: 230/400 В;
- установка: на симметричную DIN-рейку;
- присоединение: через зажимы для гибкого кабеля сечением до 10 мм² или жесткого кабеля сечением до 16 мм².

TR

Трансформаторы напряжения

15212

15218

15220-15222

Клеммные заглушки

15218-15219

 4	15228
6	15229
 10	15230

15220-15222

Применение

Звонковые трансформаторы и трансформаторы безопасности позволяют понижать напряжение с 230 В до 8, 12 или 24 В.

Первичные и вторичные цепи изолированы друг от друга.

Защищены от токов короткого замыкания благодаря своей конструкции. Обеспечивают класс изоляции II с клеммными заглушками (заказываются отдельно).

Характеристики

- первичное напряжение: 230 В ± 10%;
- вторичное напряжение:
- □ звонковые трансформаторы:
- 8, 12, 24 B ± 15%;
- □ трансформаторы безопасности:12, 24 B ± 5%;
- частота: 50-60 Гц;
- соответствие стандартам:
- M9K 61558-2-6;
- присоединение: через клеммы для кабелей сечением до 4 мм².

Адаптеры для установки кнопок XB4, XB5, XB7 SO Звонки SR Зуммеры

Тип	Кол-во модулей Ш=9мм	№ по каталогу
Адаптеры для установки кнопок	6	15151
Универсальные адаптеры	6	15152

Применение

Устанавливаются на DIN-рейку в щите, вместе с модульными устройствами. Предназначены для установки кнопок, светосигнального и другого оборудования серий XB4, XB5 и XB7.

Характеристики

Адаптеры для установки кнопок

- глубина от DIN-рейки до задней стенки щита: 60 мм, как и для других устройств Multi 9;
- установочный размер: 22 мм;
- материал: самозатухающий пластик;
- цвет: светло-серый RAL7035.

Универсальные адаптеры

- установка любых устройств соответствующего размера;
- просверливание отверстий для установки требуемого устройства;
- глубина от DIN-рейки до задней стенки щита: 60 мм, как и для других устройств Multi 9;
- цвет: светло-серый RAL7035.

15151

15152

15320

15322

Тип	Ном. напряж. (В)	Кол-во модулей Ш=9мм	№ по каталогу
Звонки SO	230	2	15320
	8-12	2	15321

Зуммеры	230	2	15322
SR L	8-12	2	15323
/			

Применение

Предназначены для звуковой сигнализации.

Характеристики

- уровень звука на расстоянии 60 см:
- □ зуммер: 70 дБ;
- □ звонок: 80 дБ;
- потребление:
- □ 3,6 ВА при 8 12 В;
- □ 5 ВА при 8 12 В;
- присоединение: через клеммы для кабелей сечением до 4 мм².

Multi 9 Принтер

215

Применение

Ленточный принтер Multi 9 предназначен для изготовления маркировочных табличек, применяемых для маркировки проводов, кабелей, аппаратов, модульных устройств, корпусов щитов и т. д.Позволяет печатать шрифтами различных видов и размеров. Принтер может печатать пиктограммы, текст, цифры, штрих-коды и т. д.

Описание

Принтер Multi 9 поставляется в комплекте:

- ■принтер Multi 9 1 шт
- ■сетевой адаптер (230 B) 1 шт
- ■аккумулятор 1 шт
- ■комплект лент для печати 4 шт (реф. 13494, 13495, 13496, 13497)

Характеристики

Принтер Multi 9

ЖКдисплей

99 символов	
индикация уровня заряда аккумулятора	•
подсветка дисплея	•
Питание ⁽¹⁾	
сетевой адаптер 230 В	
аккумулятор	
автоматический переход в режим экономии энергии (через 5 мин.)	•
Doğowa yanaytanın	
Рабочие характеристики	
рабочие условия	+4°С+40°С, относит. влажность 0%90%
	+0°C+90°C,
условия хранения	относит. влажность 10%90%
обрезное лезвие	
Аксессуары ⁽²⁾	№ по кат.
белая пропиленовая лента, 19 мм, неклейкая	13494

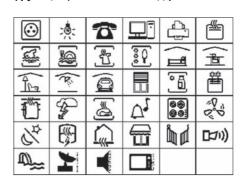
13501

13495

13496

желтая виниловая лента, 19 мм, клейкая

(1) возможно применение батарей типа АА – 6 шт. (в поставку не входят)
(2) возможны варианты лент других размеров


34 диаграммы (функции, положение и т. д.)

белая полистироловая лента, 12 мм,

белая полистироловая лента, 19 мм, клейкая

клейкая

(www.dymo.com)

Корпуса щитов

Содержание	Страница
Mini Pragma,	
навесные корпуса щитов	88
Mini Pragma,	
встраиваемые корпуса щитов	89
Kaedra, пылевлагозащищенные	
корпуса щитов	90
Аксессуары для монтажа щитов	90
Гребенчатые шинки	91
Аксессуары для присоединения	94

Таблица выбора корпусов щитов

Кол-во модулей Ш = 18 мм	Тип	Степень IP30	защиты IP31	IP40	IP43	IP54	IP55	IP65	
4 - 36	Mini Pragma, навесные	корпуса щи	тов						
4 - 36	Mini Pragma, встраивае								
3 - 72	Kaedra, пылевлагозащищенные корпуса щитов								

Таблица выбора корпусов щитов

Кол-во модулей Ш = 18 мм	Тип	Степень IP30	защиты IP31	IP40	IP43	IP54	IP55	IP65	
24 - 144	Prisma Pack, навесные корпуса щитов								
24 - 144	Prisma Pack, встраиваем	иые корпус	са щитов					•	

Prisma Pack,см. отдельный каталог

Mini Pragma Навесные корпуса щитов

Кол-во рядов	Кол-во модулей	Кол-во модулей III =	Клеммники (к-во х к-во отверстий)	№ по каталогу
	Ш = 9 мм	Ш = 18 мм	отверстий)	

Корпус щита с непрозрачной дверцей						
1	8	4	2 x 4	13376		
1	12	6	2 x 4	13377		
1	16	8	2 x 8	13378		
1	24	12	$(2 \times 4) + (2 \times 8)$	13379		
1	36	18	2 x 16	13380		
2	48	24	2 x 16	13912		
3	72	36	2 x 22	13913		

	9 мм	18 мм		
Корг	тус щита с	прозрач	ной дверцей	
1	8	4	2 x 4	13366
1	12	6	2 x 4	13367
1	16	8	2 x 8	13368
1	24	12	$(2 \times 4) + (2 \times 8)$	13369
1	36	18	2 x 16	13370
2	48	24	2 x 16	13922
3	72	36	2 x 22	13923

Клеммники

(к-во х к-во отверстий)

Кол-во Кол-во Кол-во

модулей модулей Ш = Ш =

Соединительный комплект

Применение

Kopnyca распределительных щитов Mini Pragma на токи до 63 А. Используются в жилых помещениях, на предприятиях сферы обслуживания.

Характеристики

■ непрозрачная или прозрачная дверца:
 □ 1 ряд: дверца, открывающаяся на 90° вверх;

□ 2 и 3 ряда: дверца, открывающаяся на 180 ° вправо или влево;

■ номинальный ток корпуса щита:

□ 4 модуля: 50 А;

□ от 6 до 36 модулей: 63 А;

■ материал:

□ изоляционный самозатухающий пластик;

□ цвет: белый RAL 9003;

■ соответствие нормам:

□ MЭK 439.3 (EN 60-439-3);

■ степень защиты:

□ по МЭК 529: IP40 (защита от проникновения твердых тел и жидкостей);
□ по EN 50-102: IK07 (защита от механических ударов);

□ защита от косвенных контактов: класс 2 (с изолирующими заглушками на винтах крепления);

■ стойкость к открытому огню по МЭК 695-2-1:

□ передний полукорпус: 650 °C/30 с;

□ клеммные держатели

"нейтраль/ земля": 960 °C/30 с.

Комплектация

Навесной корпус щита Mini Pragma включает в себя:

■ основание корпуса с:

 \square 4 различными отверстиями, облегчающими ввод для кабелей;

□ крепежными отверстиями;

■ металлическую рейку для облегчения прокладки кабелей;

■ передний полукорпус:

 \square с жесткой передней панелью, с заглушками и пломбирующим устройством (на заказ);

□ дверца.

№ по

каталогу

■ соединительный комплект:

□ 2 клеммника "земля/нейтраль";

□ 2 держателя клеммников;

■ характеристики клеммников:

Кол-во зажимов	Кол-во к 10°	комплектов 16°
4	2	2
8	4	4
16 22 32	8	8
22	11	11
32	16	16

Аксессуары

Навесной корпус щита Mini Pragma снабжен:

■ изоляционными заглушками для крепежных винтов, обеспечивающими изоляцию класса 2;

■ самоклеющимися этикетками символов мнемосхемы с указанием отходящих цепей и аппаратов на ряд;

Mini Pragma Встраиваемые корпуса щитов

Кол-во рядов	Кол-во модулей Ш = 9 мм	модулей	Клеммники (к-во х к-во зажимов)	№ по каталогу

Корпус щита с непрозрачной дверцей						
1	8	4	2 x 4	13371		
1	12	6	2 x 4	13372		
1	16	8	2 x 8	13373		
1	24	12	$(2 \times 4) + (2 \times 8)$	13374		
1	36	18	2 x 16	13375		
2	48	24	2 x 16	13932		
3	72	36	2 x 22	13933		

	9 мм	18 мм		
Корг	тус щита с	: прозрач	чной дверцей	
1	8	4	2 x 4	13301
1	12	6	2 x 4	13302
1	16	8	2 x 8	13303
1	24	12	$(2 \times 4) + (2 \times 8)$	13304
1	26	10	0 v 16	12205

Клеммники

(K-BO X K-BO

зажимов)

№ по

каталогу

Кол-во

Ш=

модулей

Кол-во Кол-во

модулей

Соединительный комплект

Применение

Корпуса распределительных щитов Mini Pragma на токи до 63 А. Используются в жилых помещениях, на предприятиях сферы обслуживания.

Характеристики

■ непрозрачная или прозрачная дверца: □ 1 ряд: дверца, открывающаяся на 90°

□ 2 и 3 ряда: дверца, открывающаяся на 180 ° вправо или влево:

■ номинальный ток корпуса щита:

□ 4 модуля: 50 А;

□ от 6 до 36 модулей: 63 А;

■ материал:

□ изоляционный самозатухающий пластик;

□ цвет: белый RAL 9003;

■ соответствие нормам:

□ M9K 439.3 (EN 60-439-3);

■ степень защиты:

□ по МЭК 529: ІР40 (защита от проникновения твердых тел и жидкостей); □ по EN 50-102: IK07 (защита от механических ударов);

□ защита от косвенных контактов: класс 2 (с изолирующими заглушками на винтах крепления);

■ стойкость к открытому огню по МЭК 695-2-1:

□ передний полукорпус: 650 °C/30 с; □ клеммные держатели

"нейтраль/ земля": 960 °C/30 с.

Комплектация

Встраиваемый корпус щита Mini Pragma включает в себя:

■ основание корпуса, встраиваемого в стену на небольшую глубину, имеющий размеченные отверстия на 4 боковых панелях для облегчения прохода кабелей;

■ 1 ряд: рейку DIN, регулируемую по глубине;

□ 2 и 3 ряда: металлическую рейку для облегчения монтажа отходящих кабелей;

■ поворотную переднюю панель с заглушками и пломбирующим устройством (на заказ);

дверца.

■ соединительный комплект:

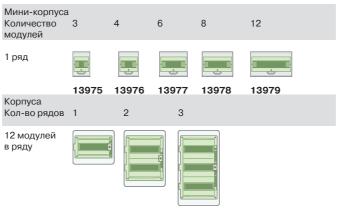
□ 2 клеммника "земля/нейтраль";

□ 2 держателя клеммников;

■ характеристики клеммников:

Кол-во зажимов	Кол-во 10°	комплектов 16°
4	2	2
8	4	4
16	8	8
22	11	11
32	16	16

Аксессуары


Встраиваемый корпус щита Mini Pragma снабжен:

■ самоклеющимися этикетками символов мнемосхемы с указанием отходящих цепей и аппаратов на ряд:

Kaedra IP65 Пылевлагозащищенные корпуса и мини-корпуса щитов

13981 13983 13985 Корпуса Кол-во рядов 1 2 3 4 18 модулей в ряду 13982 13984 13986 13987

Применение

Предназначены для установки модульного оборудования.

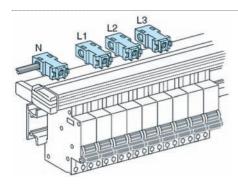
Характеристики

- компактность;
- эргономичность;
- размеры:
- □ мини-корпуса: 3-12 модулей; □ корпуса: 12-72 модуля.

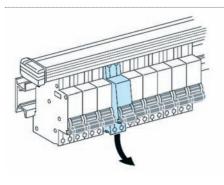
Xapa	Характеристики								Аксессуары, поставляемые вместе с корпусом (2)				№ по							
Ряд	Кол-во	Разм	иетка	отвер	стий				Разг	иеры		Комплект	Крепление	Опора	Кл	емм	ник			каталогу
	модулей	для і	крепл	ения					(MM))		для марки-	для	для	Ko	личе	ество			
		(све	рху и	снизу)	(1)							ровки	проводов	клеммника	ОТЕ	верс	тий			
		M	16	20	20	25	32	50												
		PG			11	16	21	29/36	Ш	В	Γ				4	8	16	22	32	
Man	ı ıи Kaedra	I	l	I	I	ı	I	I	1	1						ı	1	1	1	I
IVIVIE	Naeura	1		1				1								1	1	1		
1	3					1			80	150	98	1								13975
	4		1	1		1			123	200	112	1								13976
	6		1	1		1			159	200	112	1								13977
	8		2	2		1			195	200	112	1								13978
	12		2	2		2	1		267	200	112	1								13979
Кор	пуса Kaedr	а																		
1	12		6		6	2	3		340	280	160	1	1	1	1	1				13981
•	18				10	4	2	1	448	280		1	1	1	1	T.	1			13982
2	24		6		6	2	3		340	_		2	2	2	1		1	1		13983
	36				10	4	2	1	448	460		2	2	2	1				1	13984
3	36		6		6	2	3		340	610	160	3	3	3	1				1	13985
	54				10	4	2	1	448	610	160	3	3	3	1			2		13986
4	72				10	4	2	1	448	842	160	4	4	4	1				2	13987
	_						_													

- (1) Предварительное перфорирование отверстий типа PG и ISOI (EN50262).
- (2) Аксессуары в комплекте поставки:
- мини-корпуса: заглушки класса II;
- корпуса: заглушки класса II и заслонки на 5 модулей по 18 мм в ряду.

Наименование	Описание	Мини-корпуса	Корпуса	№ по каталогу
Крепежный набор	2 втулки + 4 гайки	1		13934
Лапки для крепления к стене				13935
Перфорированная пластина				13941
Сплошной пластрон	12 модулей			13944
·	18 модулей			13945
Крепление для проводов				13946
Комплект для пломбирования				13947
Замок с ключом				13948
Вставка	Треугольная			13949
	Квадратная			13950


Аксессуары

- основные аксессуары: см. таблицу спева:
- дополнительное оборудование:
- □ разделитель рядов;
- □ накладка;
- □ соединение для желоба;
- □ заслонка;
- □ опора для клеммника;
- \square изолированные клеммники;
- □ крышка IP2;
- □ сальник;
- \square самоклеющиеся символы и этикетки.


Гребенчатые шинки для DPN

Гребенчатые шинкидля DPN, DPN N	Кол-во модулей (Ш=9 мм)	№ по каталогу
1P+N	26 мод.	14880
1P+N	комплект 2 х 48 мод.	14890
3P+N	комплект 2 х 48 мод.	14899

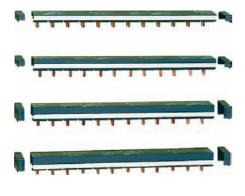
Гребенчатая шинка 3P+N с переходниками 14885

Гребенчатаяшинка 1P+N позволяет демонтировать автоматические выключатели DPN

Гребенчатые шинки 1P+N и 3P+N

- ■поставляются с двумя торцевыми заглушками IP2
- ■возможность маркировки отходящих цепей
- ■изоляция изготовлена из самозатухающего материала цвета RAL7016
- ■возможность изолировать свободные зубья с помощью защитных колпачков.

Электрические характеристики

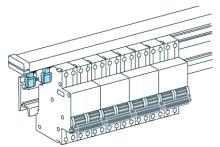

- ■номинальный ток при 40 °C:
 □80 А с одной точкой питания
 □100 А с двумя точками питания
- ■напряжение изоляции: 250 B
- ■стойкость к токам короткого замыкания соответствует отключающей способности модульных выключателей Multi 9

Подключение

- ∎гибким кабелем:
- □сечением 16 мм
- ■для выключателей DPN непосредственно к зажимам
- ■гибким кабелем $25\,\mathrm{mm}^2\,\mathrm{c}$ помощью переходника 14885.

Аксессуары	Гребенчатая шинка	№ по каталогу
Набор торцевых	1P+N	14886
заглушек (40 шт)	3P+N	14887
Набор защитных колпачков (40 шт)	1P+N и 3P+N	14898

Гребенчатые шинки для С60



Гребенчатые шинки для C60a/N/H/L	Кол-во модулей (Ш=9 мм)	№ по каталогу
1P	24 мод.	14881
	108 мод. (L = 1 м)	14801
	комплект 2 х 48 мод.	14891
2P	24 мод.	14882
	108 мод. (L = 1 м)	14802
	комплект 2 х 48 мод.	14892
3P	24 мод.	14883
	108 мод. (L = 1 м)	14803
	комплект 2 х 48 мод.	14893
4P	24 мод.	14884
	108 мод. (L = 1 м)	14804
	комплект 2 х 48 мод.	14894
Аксессуары	Гребенчатая шинка	
Набор	1P, 2P	14886
торцевыхзаглушек (40 шт)	3P, 4P	14887
Набор защитных колпачков (40 шт)	1P, 2P, 3P, 4P	14888

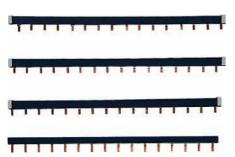
Гребенчатые шинки 1Р, 2Р, 3Р и 4Р

Электрические характеристики

- ■номинальный ток при 40 °C:
- ■80 A с одной точкой питания
- 100 A с двумя точками питания
- ■напряжение изоляции: 500 В
- ■стойкость к токам короткого замыкания соответствует отключающей способности модульных выключателей Multi 9

Подключение

- ∎гибким кабелем:
- ■сечением 25 мм² для выключателей С60
- ■гибким кабелем 25 мм² с помощью переходника 14885.


Изолированные переходники	№ по каталогу
Комплект изолированных переходников (4 шт) для кабеля	14885
сечением 25 мм	

Переходники

- ■совместимы со всеми гребенчатыми шинками Schneider-Electric
- ■крепятся непосредственно на шинку
- ■возможность маркировки

Гребенчатые шинки для C120 и NG125

Гребенчатые шинки 1Р, 2Р, 3Р и 4Р

гребенчатые шинки 1Р, 2Р, 3Р, 4Р для устройств с шириной одного полюса 27 мм длина:

432 мм (16x27 мм) для 1P, 2P и 4P шинок 405 мм (15x27 мм) для 3P шинки цвет изоляции: RAL7016

IPXXB степень защиты с использованием защитных колпачков

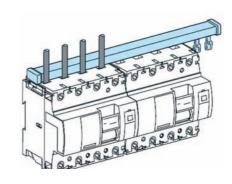
Гребенчатые шинки для C120 и NG125	№ по каталогу
1P	14811
2P	14812
3P	14813
4P	14814

Гребенчатые шинки поставляются с: 8 шт. защитных колпачков + 2 шт. торцевых заглушки для 2Р шинок 4 шт. защитных колпачков + 2 шт. торцевых заглушки для 3Р и 4Р шинок

Аксессуары	№ по каталогу
Комплект защитных колпачков и торцевых заглушек	14818

Включает в себя:

20 шт. защитных колпачков


4 шт. торцевых заглушки для 2P шинок 4 шт. торцевых заглушки для 3P и 4P шинок

Электрические характеристики

номинальный ток при 40 °C: = 125 А максимальный ток отходящей линии: 63 А напряжение изоляции: 690 В импульсное напряжение: Uimp = 8 кВ стойкость к токам короткого замыкания соответствует отключающей способности модульных выключателей Multi 9

Подключение

Подключается кабелем сечением 50 мм², непосредственно к клеммам автоматического выключателя

Аксессуары для присоединения

Аксессуары для присоединения

Тип	Ширина (мм)		№ по каталогу		
Держатель клеммников	95 105 140 320 210	4 6 8 18 12, 24, 36			13361 13362 13363 13381 13364
Тип	Ширина (мм)	Кол-во зажимов	Комг 10°	16°	№ по каталогу
Клеммник	<u>82</u> 82	8	2	2	10235 10236
Тип	Ширина (мм)	Кол-во зажимов	Комг 10°	16°	№ по каталогу
Клеммник Pragma	85 85 202 202 202	4 8 16 22 32	2 4 8 11 16	2 4 8 11 16	13575 13576 13577 13578 13579
Тип	Ширина (мм)		Цвет		№ по каталогу
Изоли- рующий колпачок	202		зеле крас сини зеле крас сини	ный й ный ный	13582 13584 13586 13583 13585 13587
Уплотнитель втулки	ные		КОМП		14190

13663

13575, 13586, 13585, 13583, 13587, 13577, 13578

13735

13736

Аксессуары для окончательной отделки

Тип	Характеристики	Цвет	№ по каталогу
Фальш- модули	комплект из 10 шт	RAL 9003	13229
Тип	Щит		№ по каталогу
Врезной замок	Min <u>i Pragma, 1 ряд</u> Mini Pragma, 2 и 3 ря		14180 13315
Тип			№ по каталогу
Пломбиру- ющее устройство	Mini Pragma, 1, 2, 3 p	ояда	13317
Тип			№ по каталогу
Комплект дл	ія гипсокартона		13360
Тип			№ по каталогу
Этикетки символов	<u>стандартные</u> <u>специальные</u>		13735 13736
Тип			№ по каталогу
Бланки этик	еток для Mini Pragm	a	13275
Тип			№ по каталогу
Рейка DIN, 3	55 мм, 2м		15099

Держатель клеммников

- защелкивается на основании щита, вверху или внизу;
- наклонен для:
- □ облегчения ввода кабелей;
- □ улучшения доступа для обжима.

Клеммник Pragma

- монтируется в щитах Mini Pragma;
- характеристики:
- □ изолирован;
- □ на токи до 80 А;
- монтаж: защелкивается на держателе или рейке DIN;
- комплектация:
- \square уплотнительные винты, поставляемые незатянутыми;
- □ направляющие шины для облегчения прокладки кабеля;
- □ номерные клеммы.

Изолирующий колпачок

- обеспечивает изоляцию клеммников;
- цвет: зеленый, красный или синий;
- позволяет достигнуть степени защиты IP2;
- 2 ширины;
- монтируются на клеммниках Pragma.

Уплотнительные втулки

- обеспечивают герметичное присоединение кабелей:
- комплект заглушек различного диаметра:
- □ 16 вводов Δ 21 или 23 мм;
- □ 8 вводов ∆ 29 мм;
- □ 2 вводов ∆ 29 мм;□ 2 ввода ∆ 37,5 мм;

Фальш-модули

- используются для выравнивания аппаратов и закрытия пустых мест в ряду;
- 5 модулей;
- цвет:
- □ белый RAL 9003;
- □ серый RAL 7035;
- комплект из 10 шт.

Врезной замок

- поставляется с 2 металлическими ключами;
- инструкция по установке в щит прилагается.

Пломбирующее устройство

■ занимает место одного из крепежных винтов на передней панели.

Этикетки символов

- позволяют идентифицировать
- отходящие цепи;
- обычные символы:
- □ потребители:- розетки;
- розетки, - освещение;
- □ места установки:
- -комната;
- ванная;
- специальные символы:
- □ потребители:
- грозовой разряд;ворота;
- ворота, - бассейн;
- □ места установки:
- техническое помещение;
- зал информатики.

Бланки этикеток

- предназначены для создания собственных самоклеющихся символов:
- маркируются с помощью SISMARKER.

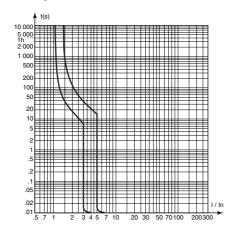
Технические характеристики

Содержание	Страница
Технические характеристики	
Кривые отключения	96-98
Уменьшение нагрузки в	
зависимости от высоты	
установки над уровнем моря	98
Выбор выключателя в	
зависимости от температуры	99
Выбор автоматического	
выключателя для сети	
постоянного тока	100
Дифференциальные	
выключатели	101
Координация дифферен-	
циальных выключателей	
с автоматическими выключателями	
C60, C120, NG125 и	
предохранителями	102
Применение	
OF, SD, контакты	
MX + OF, MN, MNs, расцепители	
для C60, C120, DPN N⊚, C32H-DC	103
TL, импульсные реле	
СТ, контакторы	105
TL, TLI, импульсные реле	
ETL, дополнительное устройство	
TLs, импульсное реле с	
сигнализацией	106
Импульсные реле для	
центрального управления	107
TL, TLs, импульсные реле с таймером	108
ME/MEr, счетчики электроэнергии	109
Реле времени	110
Размеры	
Модульные устройства	112
Корпуса щитов	400
ТІ, трансформаторы тока	
Программное обеспечение	127

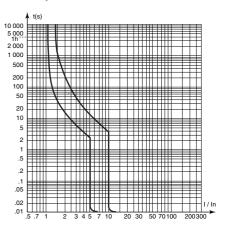
Кривые отключения

Автоматические выключатели С60

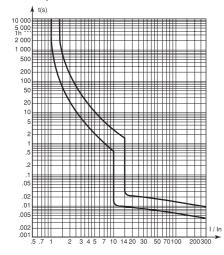
Кривые B, C, D, K, Z и MA в соответствии с нормами МЭК 60898

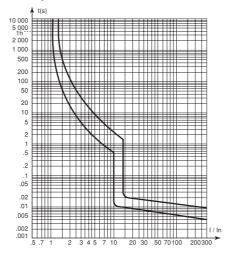

Зона срабатывания магнитного расцепителя находится:

- для кривой В между 3 ln и 5 ln;
- для кривой С между 5 ln и 10 ln;


- для кривой D между 10 ln и 14 ln;
 для кривой K между 10 ln и 14 ln;
 для кривой MA между 12 ln ±20%.

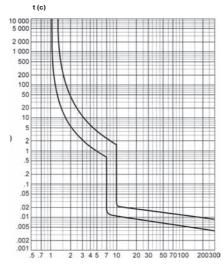
Кривые отображают предельные значения срабатывания расцепителя по перегрузке и по короткому замыканию.

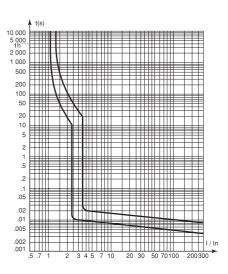

С60 кривая В


С60 кривая С


С60 кривая D

С60 кривая К

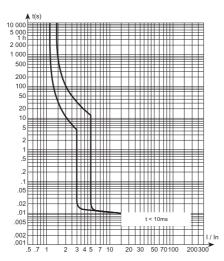

C60LMA кривая MA


1 - зона отключения тепловой защиты для серийных аппаратов.

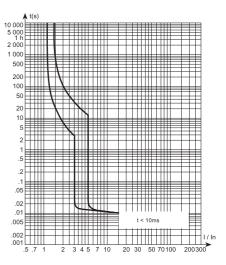
2 - зона отключения электромагнитной защиты для серийных аппаратов.

С32H-DС кривая С

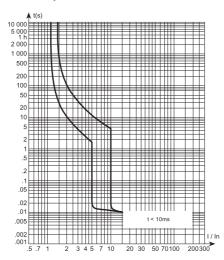
C60 кривая Z

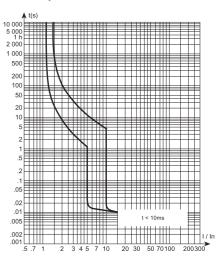

Автоматические выключатели С 120N, Н Кривые В, С и D в соответствии с нормами EN 60898

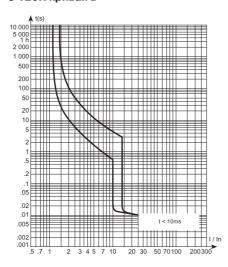
Зона срабатывания магнитного расцепителя находится:

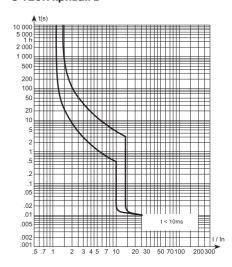

- для кривой В между 3 ln и 5 ln;
- для кривой С между 5 ln и 10 ln;
 для кривой D между 10 ln и 14 ln.

Кривые отображают предельные значения срабатывания расцепителя по перегрузке и по короткому замыканию.


С 120N кривая В


С 120Н кривая В


С 120N кривая С


С 120Н кривая С

С 120N кривая D

С 120Н кривая D

Уменьшение нагрузки в зависимости от высоты установки над уровнем моря

Влияние высоты на характеристики автоматических выключателей

Действующий стандарт МЭК 947.2 определяет диэлектрические характеристики автоматических выключателей, применяемых на высотах до 2000 м. При работе на высотах свыше 2000 м необходимо учитывать уменьшение диэлектрической прочности и более низкую температуру воздуха. При эксплуатации автоматических выключателей в этих условиях, необходима консультация производителя. Поправки на высотные характеристики приводятся в таблице. Отключающая способность автоматических выключателей остается неизменной.

Высота (м)	2000	3000	4000	
диэлектрическая прочность (B)	2500	2200	1950	
максимальное напряжение (В)	440	440	440	
термическая стойкость	In	0,96 In	0,93 ln	

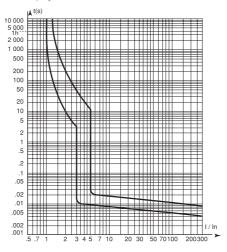
Автоматические выключатели DPN Кривые В и С в соответствии с

нормами **EN** 60898

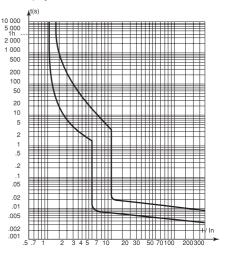
Зона срабатывания магнитного расцепителя находится:

- для кривой В между 3 ln и 5 ln;
- для кривой С между 5 ln и 10 ln.

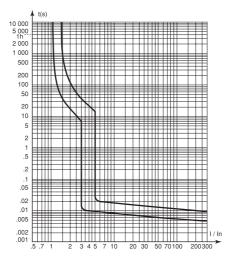
Автоматические выключатели NG125 80. 100 и 125 А

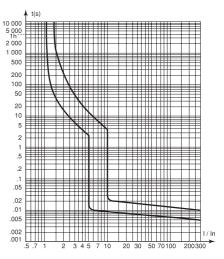

Кривые В, С и D в соответствии с нормами МЭК 60947.2

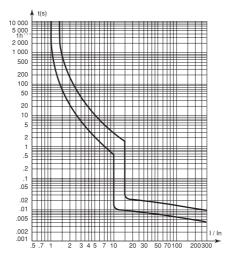
Зона срабатывания магнитного расцепителя составляет:

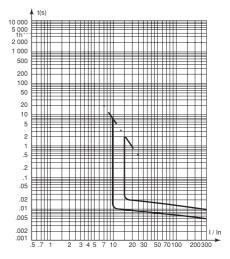

- для кривой B 4 ln ± 20 %;■ для кривой C 8 ln ± 20 %;
- для кривой D 12 ln ± 20 %;
- для кривой MA 12 ln ± 20 %.

Кривые отображают предельные значения срабатывания расцепителя по перегрузке и по короткому замыканию.


DPN, кривая В


DPN, кривая С


NG125, кривая В


NG125, кривая С

NG125, кривая D

NG125, кривая MA

Выбор выключателя в зависимости от температуры

Автоматические выключатели

C60a C60N C60H

Величина предельно допустимого тока автоматического выключателя зависит от температуры окружающей среды. В таблице даны максимальные значения тока в зависимости от температуры.

Пример:

Если номинальный ток автоматического выключателя C60N равен 20 A, то при температуре + 50° C его рабочий ток будет 17,8 A.

ooou, c	JOUIN, C	0011																			
Ном.	-30 °C	-25 °C	-20 °C	-15 °C	-10 °C	-5 °C	0 °C	5 °C	10 °C	15 °C	20 °C	25 °C	30 °C	35 °C	40 °C	45 °C	50 °C	55 °C	60 °C	65 °C	70 °C
ток (А)																					
0,5	0,70	0,68	0,67	0,66	0,65	0,63	0,62	0,61	0,59	0,58	0,56	0,55	0,53	0,52	0,5	0,48	0,47	0,45	0,43	0,41	0,39
0,75	1,04	1,02	1,00	0,98	0,97	0,95	0,93	0,91	0,89	0,86	0,84	0,82	0,80	0,77	0,75	0,72	0,70	0,67	0,64	0,61	0,58
1	1,32	1,30	1,28	1,26	1,24	1,22	1,19	1,17	1,15	1,13	1,10	1,08	1,05	1,03	1	0,97	0,95	0,92	0,89	0,86	0,83
1,6	2,25	2,21	2,17	2,13	2,09	2,05	2,00	1,95	1,91	1,86	1,81	1,76	1,71	1,66	1,6	1,54	1,48	1,42	1,36	1,29	1,22
2	2,64	2,60	2,56	2,52	2,48	2,43	2,39	2,34	2,30	2,25	2,20	2,15	2,10	2,05	2	1,95	1,89	1,83	1,77	1,71	1,65
3	4,21	4,14	4,06	3,98	3,91	3,82	3,74	3,66	3,57	3,48	3,39	3,30	3,20	3,10	3	2,89	2,78	2,67	2,55	2,42	2,29
4	5,53	5,43	5,34	5,24	5,14	5,03	4,93	4,82	4,72	4,60	4,49	4,37	4,25	4,13	4	3,87	3,73	3,59	3,44	3,29	3,13
6	8,10	7,97	7,84	7,70	7,56	7,42	7,28	7,13	6,98	6,83	6,67	6,51	6,34	6,17	6	5,82	5,64	5,44	5,25	5,04	4,83
8	11,44	11,23	11,01	10,80	10,57	10,34	10,11	9,87	9,63	9,37	9,12	8,85	8,58	8,29	8	7,70	7,38	7,05	6,70	6,33	5,95
10	14,14	13,89	13,63	13,36	13,09	12,82	12,54	12,25	11,95	11,65	11,34	11,02	10,69	10,35	10	9,64	9,26	8,86	8,45	8,02	7,56
13	17,06	16,80	16,54	16,27	16,00	15,73	15,45	15,17	14,88	14,58	14,28	13,97	13,65	13,33	13	12,66	12,31	11,95	11,58	11,20	10,80
16	21,72	21,37	21,00	20,63	20,25	19,87	19,48	19,08	18,67	18,25	17,82	17,39	16,94	16,47	16	15,51	15,01	14,48	13,94	13,38	12,79
20	26,94	26,50	26,06	25,61	25,15	24,68	24,21	23,72	23,23	22,72	22,20	21,67	21,13	20,57	20	19,41	18,80	18,17	17,52	16,84	16,14
25	33,85	33,30	32,73	32,16	31,58	30,98	30,37	29,76	29,12	28,48	27,82	27,14	26,45	25,73	25	24,24	23,46	22,66	21,82	20,95	20,04
32	42,77	42,09	41,40	40,70	39,99	39,27	38,53	37,77	37,00	36,22	35,41	34,59	33,75	32,89	32	31,09	30,15	29,18	28,18	27,14	26,05
40	54,16	53,27	52,37	51,46	50,52	49,57	48,60	47,61	46,60	45,57	44,51	43,42	42,31	41,17	40	38,79	37,54	36,25	34,91	33,52	32,07
45	62,37	61,29	60,20	59,08	57,94	56,78	55,59	54,38	53,14	51,88	50,58	49,24	47,87	46,46	45	43,49	41,94	40,32	38,63	36,86	35,01
50	67,17	66,09	64,99	63,88	62,74	61,59	60,41	59,21	57,98	56,73	55,45	54,14	52,80	51,42	50	48,54	47,04	45,49	43,88	42,21	40,47
63	87,88	86,34	84,78	83,18	81,55	79,89	78,19	76,46	74,69	72,87	71,00	69,09	67,12	65,09	63	60,83	58,59	56,25	53,82	51,27	48,58
C120N	C120H																				

CIZUN																			
-25 °C	-20 °C	-15 °C	-10 °C	-5 °C	0 °C	5 °C	10 °C	15 °C	20 °C	25 °C	30°C	2 35 °C	40 °C	45 °C	50 °C	55 °C	60 °C	65 °C	70 °C
12,27	12,08	11,89	11,69	11,50	11,29	11,09	10,88	10,67	10,45	10,23	10	9,77	9,53	9,29	9,03	8,78	8,51	8,24	7,95
19,04	18,79	18,53	18,26	18,00	17,73	17,45	17,17	16,88	16,60	16,30	16	15,69	15,38	15,06	14,74	14,41	14,06	13,72	13,36
24,48	24,10	23,73	23,34	22,95	22,55	22,15	21,73	21,31	20,89	20,45	20	19,54	19,07	18,59	18,10	17,59	17,07	16,53	15,97
30,70	30,23	29,75	29,26	28,76	28,25	27,74	27,21	26,68	26,13	25,57	25	24,42	23,82	23,20	22,57	21,92	21,25	20,56	19,85
38,43	37,89	37,34	36,79	36,22	35,65	35,07	34,48	33,87	33,26	32,64	32	31,35	30,69	30,01	29,31	28,60	27,88	27,13	26,36
49,28	48,51	47,73	46,93	46,12	45,30	44,46	43,60	42,73	41,84	40,93	40	39,05	38,07	37,07	36,04	34,98	33,88	32,75	31,58
61,50	60,55	59,58	58,59	57,59	56,57	55,53	54,47	53,38	52,28	51,15	50	48,82	47,61	46,37	45,09	43,78	42,43	41,03	39,59
77,96	76,72	75,46	74,18	72,87	71,55	70,19	68,82	67,41	65,97	64,50	63	61,46	59,88	58,26	56,59	54,87	53,10	51,26	49,35
97,62	69,15	94,66	93,14	91,61	90,04	88,44	86,82	85,17	83,48	81,76	80	78,20	76,36	74,47	72,54	70,55	68,51	66,40	64,22
122,38	120,52	118,63	116,71	114,75	112,76	110,74	108,67	106,57	104,43	102,24	100	97,71	95,37	92,96	90,50	87,96	85,35	82,66	79,87
156,99	154,35	151,67	148,95	146,17	143,33	140,45	137,50	134,48	131,40	128,24	125	121,68	118,26	114,74	111,11	107,35	103,47	99,42	95,21
	12,27 19,04 24,48 30,70 38,43 49,28 61,50 77,96 97,62 122,38	-25 °C -20 °C 12,27 12,08 19,04 18,79 24,48 24,10 30,70 30,23 38,43 37,89 49,28 48,51 61,50 60,55 77,96 76,72 97,62 69,15 122,38 120,52	-25 °C -20 °C -15 °C 12,27 12,08 11,89 19,04 18,79 18,53 24,48 24,10 23,73 30,70 30,23 29,75 38,43 37,89 37,34 49,28 48,51 47,73 61,50 60,55 59,58 77,96 76,72 75,46 97,62 69,15 94,66 122,38 120,52 118,63	-25 °C -20 °C -15 °C -10 °C 12,27 12,08 11,89 11,69 19,04 18,79 18,53 18,26 24,48 24,10 23,73 23,34 30,70 30,23 29,75 29,26 38,43 37,89 37,34 36,79 49,28 48,51 47,73 46,93 61,50 60,55 59,58 58,59 77,96 76,72 75,46 74,18 97,62 69,15 94,66 93,14 122,38 120,52 118,63 116,71	-25 °C -20 °C -15 °C -10 °C -5 °C 12,27 12,08 11,89 11,69 11,50 19,04 18,79 18,53 18,26 18,00 24,48 24,10 23,73 23,34 22,95 30,70 30,23 29,75 29,26 28,76 38,43 37,89 37,34 36,79 36,22 49,28 48,51 47,73 46,93 46,12 61,50 60,55 59,58 58,59 57,59 77,96 76,72 75,46 74,18 72,87 97,62 69,15 94,66 93,14 91,61 122,38 120,52 118,63 116,71 114,75	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 12,27 12,08 11,89 11,69 11,50 11,29 19,04 18,79 18,53 18,26 18,00 17,73 24,48 24,10 23,73 23,34 22,95 22,55 30,70 30,23 29,75 29,26 28,76 28,25 38,43 37,89 37,34 36,79 36,22 35,65 49,28 48,51 47,73 46,93 46,12 45,30 61,50 60,55 59,58 58,59 57,59 56,57 77,96 76,72 75,46 74,18 72,87 71,55 97,62 69,15 94,66 93,14 91,61 90,04 122,38 120,52 118,63 116,71 114,75 112,76	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 19,04 18,79 18,53 18,26 18,00 17,73 17,45 24,48 24,10 23,73 23,34 22,95 22,55 22,15 30,70 30,23 29,75 29,26 28,76 28,25 27,74 38,43 37,89 37,34 36,79 36,22 35,65 35,07 49,28 48,51 47,73 46,93 46,12 45,30 44,46 61,50 60,55 59,58 59,59 57,59 56,57 55,53 77,96 76,72 75,46 74,18 72,87 71,55 70,19 97,62 69,15 94,66 93,14 91,61 90,04 88,44 122,38 120,52 118,63 116,71 114,75 112,76 110,74	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 49,28 48,51 47,73 46,93 46,12 45,30 44,46 43,60 61,50 60,55 59,58 58,59 57,59 56,57 55,53 54,47 77,96 76,72 75,46 74,18 72,87 71,55 70,19 68,82 97,62 69,15 94,66 93,14 91,61 90,04 88,44 86,82	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 49,28 48,51 47,73 46,93 46,12 45,30 44,46 43,60 42,73 61,50 60,55 59,58 58,59 57,59 56,57 55,53 54,47 53,38 77,96 76,72 75,46 74,18 72,87 71,55 70,19 68,82 67,41	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,33 21,31 20,89 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 49,28 48,51 47,73 46,93 46,12 45,30 44,46 43,60 42,73 41,84 61,50 60,55 59,58 58,59 57,59 56,57 55,53 54,47 53,38 52,28 77,96 76,72<	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 30,70 30,23 29,75 29,26 28,76 20,25 27,74 27,21 26,68 26,13 25,57 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,64 49,28 48,51 47,73 46,93 46,12 45,30 44,46 43,60 42,73 41,84 40,93 61,50 60,55 59,58 58,59 57,59 56	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,64 32 49,28 48,51 47,73 46,93 46,12 45,30 44,46 43,60 42,73 41,84 40,93 40 <	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,64 32 31,35 49,28 48,51 47,73 46,93 46,12 45,30 44,46 <th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,31 20,89 20,45 20 19,54 19,07 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,64 32 31,35 30,69 49,28 48,51<th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,</th><th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 9,03 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 14,74 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 18,10 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 22,57 38,43 37,89 37,34 36,79 36,22 35,6</th><th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 9,03 8,78 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 14,74 14,41 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 18,10 17,59 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 22,57 21,92 38,43</th><th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 60 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 9,03 8,78 8,51 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 14,74 14,41 14,06 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 18,10 17,59 17,07 30,73 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 22,57 21,92 21,25 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,64 32 31,35 30,69 30,01 29,31 28,60 27,88 49,28 48,51 47,73 46,93 46,12 45,30 44,46 43,60 42,73 41,84 40,93 40 39,05 38,07 37,07 36,04 34,98 33,88 61,50 60,55 59,58 58,59 57,59 56,57 55,53 54,47 53,38 52,28 51,15 50 48,82 47,61 46,37 45,09 43,78 42,43 77,96 76,72 75,46 74,18 72,87 71,55 70,19 68,82 67,41 65,97 64,50 63 61,46 59,88 58,26 56,59 54,87 53,10 97,62 69,15 94,66 93,14 91,61 90,04 88,44 86,82 85,17 83,48 81,76 80 78,20 76,36 74,47 72,54 70,55 68,51 122,38 120,52 118,63 116,71 114,75 112,76 110,74 108,67 106,57 104,43 102,24 100 97,71 95,37 92,96 90,50 87,96 85,35</th><th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 60 °C 65 °C 12.27 12.08 11.89 11.69 11.50 11.29 11.09 10.88 10.67 10.45 10.23 10 9.77 9.53 9.29 9.03 8.78 8.51 8.24 19.04 18.79 18.53 18.26 18.00 17.73 17.45 17.17 16.88 16.60 16.30 16 15.69 15.38 15.06 14.74 14.41 14.06 13.72 14.48 14.49 19.07 18.59 18.10 17.59 17.07 16.53 18.07 30.23 29.75 29.26 28.76 28.25 27.74 27.21 26.68 26.13 25.57 25 24.42 23.82 23.20 22.57 21.92 21.25 20.56 18.43 37.89 37.34 36.79 36.22 35.65 35.07 34.48 33.87 33.26 32.64 32 31.35 30.69 30.01 29.31 28.60 27.88 27.13 19.28 14.51 14.73 16.53 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 15.54 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55</th></th>	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,31 20,89 20,45 20 19,54 19,07 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,64 32 31,35 30,69 49,28 48,51 <th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,</th> <th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 9,03 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 14,74 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 18,10 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 22,57 38,43 37,89 37,34 36,79 36,22 35,6</th> <th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 9,03 8,78 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 14,74 14,41 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 18,10 17,59 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 22,57 21,92 38,43</th> <th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 60 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 9,03 8,78 8,51 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 14,74 14,41 14,06 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 18,10 17,59 17,07 30,73 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 22,57 21,92 21,25 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,64 32 31,35 30,69 30,01 29,31 28,60 27,88 49,28 48,51 47,73 46,93 46,12 45,30 44,46 43,60 42,73 41,84 40,93 40 39,05 38,07 37,07 36,04 34,98 33,88 61,50 60,55 59,58 58,59 57,59 56,57 55,53 54,47 53,38 52,28 51,15 50 48,82 47,61 46,37 45,09 43,78 42,43 77,96 76,72 75,46 74,18 72,87 71,55 70,19 68,82 67,41 65,97 64,50 63 61,46 59,88 58,26 56,59 54,87 53,10 97,62 69,15 94,66 93,14 91,61 90,04 88,44 86,82 85,17 83,48 81,76 80 78,20 76,36 74,47 72,54 70,55 68,51 122,38 120,52 118,63 116,71 114,75 112,76 110,74 108,67 106,57 104,43 102,24 100 97,71 95,37 92,96 90,50 87,96 85,35</th> <th>-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 60 °C 65 °C 12.27 12.08 11.89 11.69 11.50 11.29 11.09 10.88 10.67 10.45 10.23 10 9.77 9.53 9.29 9.03 8.78 8.51 8.24 19.04 18.79 18.53 18.26 18.00 17.73 17.45 17.17 16.88 16.60 16.30 16 15.69 15.38 15.06 14.74 14.41 14.06 13.72 14.48 14.49 19.07 18.59 18.10 17.59 17.07 16.53 18.07 30.23 29.75 29.26 28.76 28.25 27.74 27.21 26.68 26.13 25.57 25 24.42 23.82 23.20 22.57 21.92 21.25 20.56 18.43 37.89 37.34 36.79 36.22 35.65 35.07 34.48 33.87 33.26 32.64 32 31.35 30.69 30.01 29.31 28.60 27.88 27.13 19.28 14.51 14.73 16.53 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 15.54 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55</th>	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 9,03 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 14,74 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 18,10 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 22,57 38,43 37,89 37,34 36,79 36,22 35,6	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 9,03 8,78 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 14,74 14,41 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 18,10 17,59 30,70 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 22,57 21,92 38,43	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 60 °C 12,27 12,08 11,89 11,69 11,50 11,29 11,09 10,88 10,67 10,45 10,23 10 9,77 9,53 9,29 9,03 8,78 8,51 19,04 18,79 18,53 18,26 18,00 17,73 17,45 17,17 16,88 16,60 16,30 16 15,69 15,38 15,06 14,74 14,41 14,06 24,48 24,10 23,73 23,34 22,95 22,55 22,15 21,73 21,31 20,89 20,45 20 19,54 19,07 18,59 18,10 17,59 17,07 30,73 30,23 29,75 29,26 28,76 28,25 27,74 27,21 26,68 26,13 25,57 25 24,42 23,82 23,20 22,57 21,92 21,25 38,43 37,89 37,34 36,79 36,22 35,65 35,07 34,48 33,87 33,26 32,64 32 31,35 30,69 30,01 29,31 28,60 27,88 49,28 48,51 47,73 46,93 46,12 45,30 44,46 43,60 42,73 41,84 40,93 40 39,05 38,07 37,07 36,04 34,98 33,88 61,50 60,55 59,58 58,59 57,59 56,57 55,53 54,47 53,38 52,28 51,15 50 48,82 47,61 46,37 45,09 43,78 42,43 77,96 76,72 75,46 74,18 72,87 71,55 70,19 68,82 67,41 65,97 64,50 63 61,46 59,88 58,26 56,59 54,87 53,10 97,62 69,15 94,66 93,14 91,61 90,04 88,44 86,82 85,17 83,48 81,76 80 78,20 76,36 74,47 72,54 70,55 68,51 122,38 120,52 118,63 116,71 114,75 112,76 110,74 108,67 106,57 104,43 102,24 100 97,71 95,37 92,96 90,50 87,96 85,35	-25 °C -20 °C -15 °C -10 °C -5 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 60 °C 65 °C 12.27 12.08 11.89 11.69 11.50 11.29 11.09 10.88 10.67 10.45 10.23 10 9.77 9.53 9.29 9.03 8.78 8.51 8.24 19.04 18.79 18.53 18.26 18.00 17.73 17.45 17.17 16.88 16.60 16.30 16 15.69 15.38 15.06 14.74 14.41 14.06 13.72 14.48 14.49 19.07 18.59 18.10 17.59 17.07 16.53 18.07 30.23 29.75 29.26 28.76 28.25 27.74 27.21 26.68 26.13 25.57 25 24.42 23.82 23.20 22.57 21.92 21.25 20.56 18.43 37.89 37.34 36.79 36.22 35.65 35.07 34.48 33.87 33.26 32.64 32 31.35 30.69 30.01 29.31 28.60 27.88 27.13 19.28 14.51 14.73 16.53 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 14.54 15.54 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55

C60a, 0	60N, C	60H																			
Ном.	-30 °C	-25 °C	-20 °C	-15 °C	-10 °C	-5 °C	0 °C	5 °C	10 °C	15 °C	20 °C	25 °C	30 °C	35 °C	40 °C	2 45 °C	50 °C	55 °C	60 °C	65 °C	70 °C
ток (А)																					
10	14,24	13,98	13,72	13,45	13,17	12,89	12,60	12,31	12,00	11,69	11,38	11,05	10,71	10,36	10	9,63	9,24	8,83	8,40	7,95	7,48
16	21,64	21,29	20,93	20,56	20,19	19,81	19,43	19,03	18,63	18,22	17,80	17,36	16,92	16,47	16	15,52	15,02	14,51	13,98	13,42	12,84
20	28,30	27,79	27,27	26,74	26,20	25,65	25,08	24,50	23,91	23,31	22,68	22,04	21,38	20,70	20	19,27	18,51	17,72	16,90	16,03	15,11
25	33,58	33,04	32,49	31,93	31,37	30,79	30,20	29,60	28,99	28,36	27,72	27,07	26,40	25,71	25	24,27	23,52	22,74	21,94	21,11	20,24
32	43,50	42,78	42,05	41,31	40,55	39,78	38,99	38,19	37,37	36,53	35,67	34,79	33,88	32,95	32	31,02	30,00	28,95	27,85	26,72	25,53
40	54,52	53,61	52,69	51,75	50,79	49,82	48,83	47,81	46,78	45,72	44,63	43,52	42,38	41,21	40	38,76	37,47	36,14	34,76	33,32	31,81
50	69,66	68,45	67,21	65,94	64,66	63,34	62,00	60,63	59,23	57,80	56,32	54,81	53,26	51,65	50	48,29	46,52	44,67	42,75	40,74	38,62
63	87,52	86,00	84,45	82,88	81,27	79,63	77,96	76,25	74,50	72,71	70,88	68,99	67,05	65,06	63	60,87	58,67	56,38	53,99	51,49	48,86
80	109,60	107,76	105,88	103,97	102,02	100,04	98,02	95,95	93,84	91,68	89,46	87,19	84,86	82,47	80	77,45	74,82	72,09	69,26	66,30	63,20
100	143,43	140,77	138,06	135,30	132,48	129,60	126,65	123,64	120,54	117,37	114,11	110,75	107,29	103,71	100	96,15	92,14	87,95	83,54	78,89	73,95
125	174,68	171,61	168,48	165,29	162,05	158,73	155,34	151,88	148,34	144,71	140,99	137,17	133,24	129,18	125	120,67	116,18	3 111,51	106,64	101,53	3 96,15
C32H-F)C																				

Ном. ток (А)	20 °C	30 °C	40 °C	50 °C	60 °C
1	1,1	1	1	0,9	0,9
2	2,2	2,1	2	1,9	1,9
3	3,3	3,2	3	2,8	2,6
5	5,5	5,3	5	4,7	4,4
10	11	10,5	10	9,5	8,5
15	16,5	16	15	14	13
20	22	21	20	19	18
25	27,5	26	25	23,5	22
32	33,5	34	32	30	28
40	44,5	42,5	40	37	37

Дифференциальные выключатели

При установке устройства защиты от сверхтоков выше дифференциального выключателя следует учитывать величины, приведенные в таблице.

ID					
Ном. ток (А)	25 °C	30 °C	40 °C	50 °C	60 °C
25	32	30	25	23	20
40	46	44	40	36	32
63	75	70	63	56	50
40 63 80	95	90	80	72	65

Контакторы

Хотя при выборе контактора не учитывается температура окружающей среды, рекомендуется устанавливать фальш-модули (№ 27062) по обе стороны от контактора при рабочей температуре от + 50 °C до + 60 °C.

Выбор автоматическоговыключателя для сети постоянного тока

Критерии выбора

- ■Выбор автоматического выключателя для защиты цепей постоянного тока зависит от следующих основных факторов:
- ■номинального тока (для определения типа устройства);
- ■номинального напряжения (для определения количества полюсов);
- ■максимального тока короткого замыкания (для определения отключающей способности);
- ■типа системы заземления (см. ниже).

Технические характеристики

Тип	Ном. ток		Отк	лючающая с	пособность (н	(A)		Тепловой	Коеф.
	(A)	(кол-во посл	едовательно сое	диненных пол	тюсов, необход	димое для откл	ючения токов	расцепитель	пересч.
				КЗ указано	в скобках)				эл. магн.
		24/48 B	60 B	125 B	125 B	250 B	500 B]	расцеп.
C32H-DC	1-40	20 (1P)		10 (1P)	20 (2P)	10 (2P)		спец. DC	спец. DC
C60a	10-40	10 (1P)		10 (2P)	20 (3P)	25 (4P)		аналог. АС	1,38
C60N	6-63	15 (1P)		20 (2P)	30 (3P)	40 (4P)		аналог. АС	1,38
C60H	1-63	20 (1P)		25 (2P)	40 (3P)	50 (4P)		аналог. АС	1,38
C60L	1-63	25 (1P)		30 (2P)	50 (3P)	60 (4P)		аналог. АС	1,38
C120N	63-125	10 (1P)		10 (1P)		10 (2P)		аналог. АС	1,4
C120H	10-125	15 (1P)		15 (1P)		15 (2P)		аналог. АС	1,4
NG125N	10-125		25 (1P)	25 (1P)		25 (2P)	25 (4P)	аналог. АС	1,42
NG125H	10-125		36 (1P)	36 (1P)		36 (2P)	36 (4P)	аналог. АС	1,42
NG125L	10-125		50 (1P)	50 (1P)		50 (2P)	50 (4P)	аналог. АС	1,42

Тип системы заземления		Система с заземлением одного из полюсов	Система с заземлением средней точки	Система с изолированной средней точкой		
Схемы и возможные виды авар	рий	i a a B A A R	□ U/2 B A A R	B B A A		
Анализ последствий аварий	A	максимальный Ісс только	Ісс близок к максималь-	без последствий		
		в положительном полюсе	ному в положительном по- люсе в половину напряже- ния (U/2)			
	В	максимальный Ісс в обоих полюсах	максимальный Ісс в обоих полюсах	максимальный Ісс в обоих полюсах		
	С	без последствий	То же, что и А, но в отрица- тельном полюсе	без последствий		
Самый неблагоприятный случай		A	АиС	В		

Дифференциальные выключатели

для защиты людей и оборудования

Дифференциальный выключатель представляет собой коммутационное устройство, подключенное к тороидальному датчику, контролирующему состояние активных участков сети. Его задачей является обнаружение разности токов или тока утечки, вызванных повреждением изоляции между фазой и землей, после чего происходит автоматическое отключение питания, с тем, чтобы обезопасить людей от возможных последствий.

Применение

■ I∆n: от 10 до 300 мA

□ предотвращает угрозу прямого контакта с токоведущими частями в режиме с глухим заземлением нейтрали ТТ; □ предотвращает угрозу непрямого кон-такта персонала с токоведущими частя-ми в системах с изолированной нейтралью ІТ (случай двойной неисправности) и в системе нейтрали с многократным заземлением ТN (разрыв защитного провода и т. д.); □ применяется в открытых электроустановках (на стройплощадках, в парках

аттракционов, в бассейнах и т. д.); ■ I∆n: 300 мА

□ применяется на объектах с повышенной пожароопасностью; □ предотвращает угрозу от непрямого контакта в режиме TT;

■І∆п: 300 мА 🗟 селективный □ предотвращает угрозу от непрямого контакта в режиме ТТ; □ обладает селективностью относитель-

□ обладает селективностью относительно дифференциальных устройств, установленных со стороны электроприемника с чувствительностью не более 30 мА.

Рекомендации по монтажу

В случае повреждения изоляции должен быть отключен только неисправный участок цепи с помощью защитных устройств, с тем, чтобы обеспечить бесперебойную работу остальных цепей. Это может быть достигнуто за счет селективного отключения на различных уровнях цепи.

Координация дифференциальных устройств для достижения полной селективности

Расцепитель мгновенного действия	Селекти расцепи 100 мА	1ВНЫЙ итель S 300 мА	(A) 1 A	3 A
10 мА				
30 мА				
100 мА				
300 мА				
500 мА				
1A				

Защита от ложных срабатываний Причины:

- перенапряжения, вызванные атмосферными явлениями (удар молнии в сеть);
- коммутационные перенапряжения;
- включение энергоемких цепей, защищенных дифференциальными устройствами.

Все дифференциальные устройства серии Multi 9, имеющие знак Λ на передней панели защищены от ложных срабатываний.

Люминисцентные светильники

При чувствительности, равной 30 мА, длина провода не должна превышать 400 м. В случае некомпенсированной цепи освещения, количество ламп не должно превышать 12*65 Вт/фаза.

Пример

двухуровневой селективной защиты

В случае возникновения повреждения изоляции у одного из приборов (см. рис.1) между автоматическими дифференциальными выключателями 300 мА и расцепителями 300 мА срабатывает каскадная селективность.

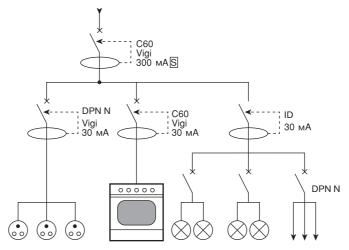


Рис. 1: Пример селективной защиты на двух уровнях (стандартная схема, применяемая в Европе)

Координация дифференциальных выключателей с автоматическими выключателями C60, C120, NG125 и предохранителями

Применение

Дифференциальный выключатель имеет две функции:

- включение или отключение от источника питания электроприемника;
- мгновенное отключение в случае повреждения изоляции оборудования или

После устранения неисправности, питание может быть восстановлено поворотом рукоятки.

Для защиты от перегрузок или короткого замыкания дифференциальный выключатель последовательно подключается к предохранителю или автоматическому выключателю верхнего уровня. При сочетании дифференциального выключателя с автоматическим выключателем появляется дополнительная функция - защита цепей от перегрузок и коротких замыканий.

- рис. 1: координация с 100-300 мА S обеспечивает полную вертикальную се-лективность дифференциальных устройств (вертикальное переключение):
- рис. 2: дополнительная возможность оптимизировать работу за счет использования различных автоматических выключателей в распределительных сетях (горизонтальная селективность).

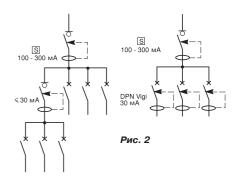


Рис. 1

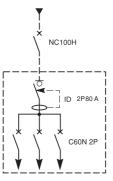
Координация с автоматическими выключателями или с предохранителями

Одним из критериев выбора автоматического выключателя является возможность его координации с устройствами защиты от короткого замыкания в цепях, близких к источнику питания.

Дифференциальный выключатель обладает ограниченной устойчивостью к коротким замыканиям и должен быть защищен от коротких замыканий в нижней цепи (электромагнитная защита).

Меры предосторожности

Дифференциальный выключатель должен быть также защищен от перегрузок сети (термическая защита). Ниже приведены длительно допустимые значения тока.


Электромагнитная защита

■ Примечание:

в случае, если дифференциальные и автоматические выключатели установлены в одном щите (в соответствии с принятыми нормативами), то автоматические выключатели должны обладать достаточной устойчивостью к току короткого замыкания, относительно дифференциального выключателя (см. схему).

■Пример: двухполюсный дифференциальный выключатель с **УСТОЙЧИВОСТЬЮ К** Icc = 20 kA

относительно автоматического выключателя С60.

Координаци	ія автоматич	еског	о и ди	іффер	енци	ально	ого выкли	очателе	й (Ісс, кА	, дейст.)
Выключатель		DPN	C60a	C60N	C60H	C60L	C120H	C120N	NG125H	NG125L
установка пер	оед ID									
установка										
после ID,	25 A	6	12	16	20	45	10	20	20	20
2 полюса	40 A	6	12	16	20	45	10	20	20	20
230-240 B	63 A			16	20	30	10	20	20	20
	80/100 A						10	20	20	20
ID,	25 A		6	8	10	25	7	15	18	20
4 полюса	40 A		6	8	10	20	7	15	18	20
380-415 B	63 A			8	10	15	7	15	18	20
	80/10 A						5	7	8	10

Координаци										т.)
Предохранител	1Ь	16 A	25 A	32 A	40 A	50 A	63 A	80 A	100 A	
gLиG1										
установка пер	оед ID									
установка										
после ID,	25 A	100	100	100	80	50	30	20	10	
2 полюса	40 A	100	100	100	80	50	30	20	10	
220-240 B	63 A	100	100	100	80	50	30	20	10	
	80/100 A	100	100	100	80	50	30	20	10	
ID,	25 A	100	100	100	80	50	30	20	10	
4 полюса	40 A	100	100	100	80	50	30	20	10	
380-415 B	63 A	100	100	100	80	50	30	20	10	
	80/100 Δ	100	100	80	50	30	10	3	3	

Допустимые значения постоянного тока

При установке устройства термической защиты (защиты от перегрузок) выше дифференциального выключателя следует учитывать величины, приведенные в таблице (для устройств расположенных отдельно, вне помещений).

Класс А	Температура	16	25	40	63	80	100	100 BS
максимальный	25°C	20	32	46	75	95	110	100
ток при	30°C	18	30	44	70	90	120	96
температуре	40°C	16	25	40	63	80	117	90
окружающей	50°C	14	23	36	56	72	105	80
среды	60°C	13	20	32	50	65	90	72
сечение медно	го кабеля, мм² ≽	2,5	4	10	16	25	35	35

Для нескольких устройств, находящихся в одном корпусе: к этим значениям применяется коэффициент 0,85.

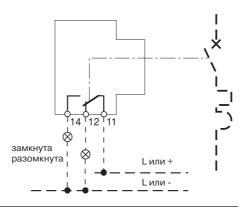
5

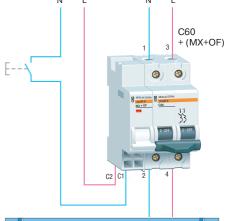
OF, SD Контакты MX + OF, MN, MN_□ Расцепители

для C60, Ć120, ĎPN №

ОF Вспомогательный контакт

Присоединение


Согласно приведенной схеме.


Применение

Звуковая или световая сигнализация состояния цепи по принципу "разомкнута" или "замкнута". Данный вид оповещения может быть выведен на лицевую панель распределительного щита, а также на центральный пульт управления. Может применяться в сочетании с контактом SD.

Примечание

■ имеется возможность тестирования контакта при помощи ручки на передней панели при отключенном автоматическом выключателе.

Пример: аварийное отключение

SD Вспомогательный контакт сигнализации повреждения

Присоединение

Согласно приведенной схеме.

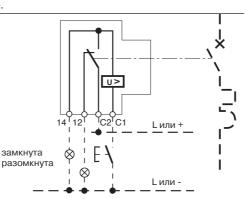
Применение

Звуковая или световая сигнализация повреждения в электрической цепи уп-равления кондиционером, лифтом, вен-тиляционной системой и т.д. Может при-меняться в сочетании с контактом ОF.

Примечание

- сигнализация на лицевой панели о состоянии контакта (красный механический индикатор) и функция "квитирование повреждения";
- возможность тестирования контакта нажатием кнопки "тест" (расположена над клеммами со стороны ввода) при отключенном автоматическом выключателе.

MX+OF


Независимый расцепитель

Присоединение

Согласно приведенной схеме.

Применение

Дистанционное размыкание электрической цепи, посредством отключения автоматического выключателя.

L или +

L или -

94

 \otimes

повреждение

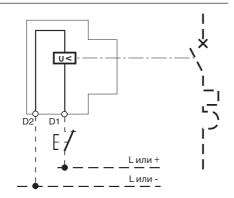
норма

Примечание

- клеммы 12 и 14 позволяют осуществлять сигнализацию в зависимости от состояния вспомогательного контакта ОF, находящегося под напряжением, равным напряжению на катушке;
- сигнализация расцепления на передней панели посредством красного механического индикатора.

MN/MNS

Расцепители минимального напряжения


Присоединение

Согласно приведенной схеме.

Применение

Размыкание электрических цепей посредством расцепления автоматического выключателя в случае:

- аварийного отключения;
- исчезновения напряжения.
- В обоих случаях исключается самопроизвольное повторное включение, что, в свою очередь, обеспечивает полную безопасность когда:
- имеется вероятность самопроизвольного повторного включения машины или оборудования (циркулярная пила, шпиндель станка и т.д.);
- необходимо контролировать повторный пуск оборудования вследствие ис-чезновения напряжения.

Примечание

■ сигнализация расцепления на передней панели посредством красного механического индикатора.

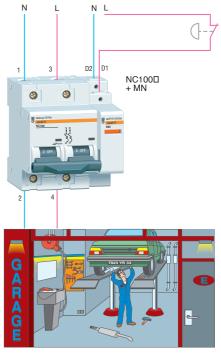
OF, SD Контакты MX+OF, MN, MN Pасцепители для C32H-DC

ОF Вспомогательный контакт

Применение

Звуковая или световая сигнализация состояния цепи по принципу "разомкнута" или "замкнута". Сигнализация может быть выведена на лицевую панель распределительного щита, или на центральный пульт управления.

Может применяться в сочетании с контактом SD.



SD Вспомогательный контакт сигнализации повреждения

Применение

Звуковая или световая сигнализация повреждения в электрической цепи управления кондиционером, лифтом, вентиляционной системой и т.д. Может применяться в сочетании с контактом ОF.

Пример: аварийное отключение


MX+OF Независимый расцепитель

Применение

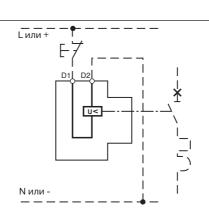
Дистанционное размыкание электрических цепей посредством отключения автоматического выключателя.

Примечание

- клеммы 12 и 14 позволяют осуществлять сигнализацию в зависимости от состояния вспомогательного контакта ОF, находящегося под напряжением, равным напряжению на катушке;
- сигнализация расцепления на передней панели посредством красного механического индикатора.

MN/MNS

Расцепители минимального напряжения


Применение

Размыкание электрических цепей посредством отключения автоматического выключателя в случае:

- аварийного отключения;
- исчезновения напряжения.
- В обоих случаях исключается самопроизвольное повторное включение, что в свою очередь обеспечивает полную безопасность когда:
- имеется вероятность самопроизвольного повторного включения машины или оборудования (циркулярная пила, шпиндель станка и т. д.);
- необходимо контролировать повторный пуск оборудования вследствие ис-чезновения напряжения.

Примечание

■ сигнализация отключения на передней панели посредством красного механического индикатора.

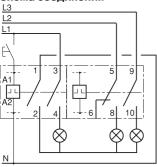
TL Импульсные реле CT Контакторы

Контроль за системами освещения и отопления

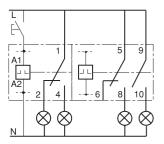
В таблице указаны максимальная нагрузка или количество ламп для однофазной цепи 230 В.

Для трехфазной цепи 400 В необходимо умножить приведенные значения на 3.

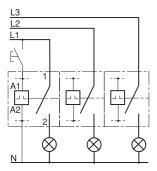
Для трехфазной цепи 230 В необходимо умножить значения на 1,7.

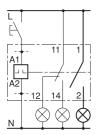

		Marcus	изпърза па	агрузка (к	3T)			
		TL 16 A	TL 32 A	CT 16 A	CT 25 A	CT 40 A	CT 63 A	CT 100 A
Однофазная на		3,6	7,2		5,4	8,6	14	21,6
лампы накаливания	вольфрамовая нить (230 В), галоген 40 60 75 100 150 200 300 500 1000 Вт							
	40 27 21 16 11 8 5 3 1	1,6						
	<u>65 43 35 26 17 13 9 5 2</u>		2,6	2,2				
	83 55 44 33 22 17 11 6 3				3.3	0.4		
	<u>150 100 80 60 40 30 20 12 5</u> 210 140 112 84 56 42 28 16 7					6,4	8.4	12,8
	галогенные лампы низкого напряжения (от 12 до 24 В)						0,4	12,0
	с разделительным трансформатором							
	20 50 75 100 Βτ 15 10 8 6			0,6				
	23 15 12 9			0,0	1,0			
	70 28 18 14	1,4			.,0			
	110 44 29 22		2,2					
	42 27 23 18					2,0		
	63 42 35 27						3,0	4.0
люминес-	94 63 52 40 одинарные со стартером (компенсированные)							4,0
центные	18 36 58 20 40 65 Вт							
лампы	20 20 15 20 20 15	1,2			1,2			
	93 61 37 84 55 33		2,2					
	15 15 10 15 15 10 40 40 30 40 40 30			0,7		2,0		
	<u>40 40 30 40 40 30</u> 60 60 43 60 60 43					2,0	3,0	
	90 90 64 90 90 64						0,0	4,0
	двойные со стартером (компенсированные)							.,,•
	2x18 2x36 2x58 2x20 2x40 2x65 Bt							
	22 20 13 22 20 13 67 36 22 60 32 20	2,6		2,0				
	105 56 35 95 51 31	2,0	4,1					
	30 28 17 30 28 17		7,1		2,3			
	70 60 35 60 60 35				,-	4,2		
	136 73 45 123 66 40						5,3	
	180 100 63 180 100 63							8,3
	одинарные с балластным сопротивлением 16 32 50 Вт							
	75 46 30	1,5		1,5				
	135 84 54		2,7					
	80 50 32			1,6				
	90 56 36 180 112 72				1,8	3,6		
	270 168 108					3,0	5,4	
	500 260 160						0, 1	9,6
	двойные с балластным сопротивлением							
	2x16 2x32 2x50 BT	1.6		1.6				
	<u>40 25 16</u> 72 45 29	1,6	2,9	1,6				
	45 28 18		۷,5		1,8			
	95 59 38				, -	3,8		
	140 87 56						5,6	
	250 135 85							9,8
газо- разрядные	натриевые низкого давления 35 55 90 Вт							
лампы	37 27 18		1,7					
	83 62 42					3,8		
	135 101 68						6,2	
	натриевые высокого давления или металлоиодидовые		2.0					
	13 30		2,0			4,6		
	48					4,0	7,2	
	ртутные высокого давления						, , <u>~</u>	
	50 80 125 250 400 Bτ							
	37 25 17 8 4		2,2					
	87 58 40 20 11 130 87 60 30 17					5,1	7,6	
	100 01 00 00 11						1,0	

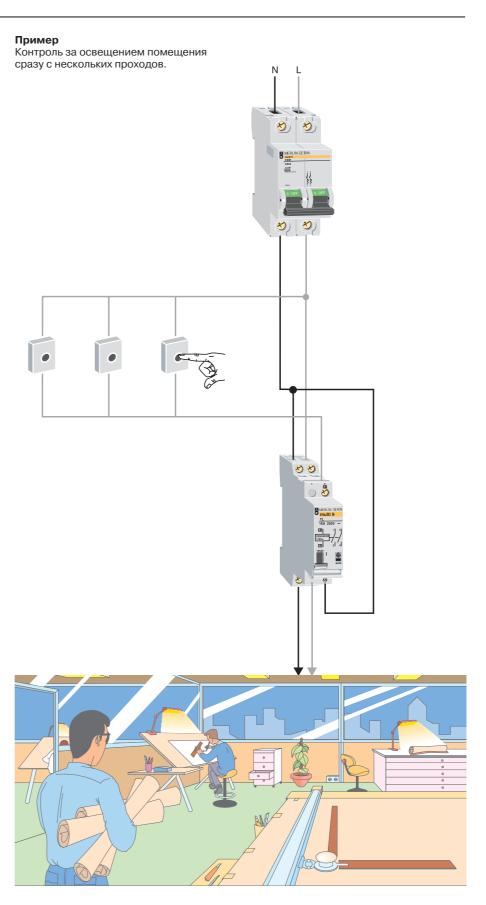
TL, TLI Импульсные реле ETL Дополнительное устройство TLs Импульсное реле с сигнализацией


Применение

Управление цепями посредством импульсных команд, посылаемых нажатием ряда кнопок, обычных или с подсветкой. Применение импульсного реле TLs позволяет осуществлять дистанционный контроль с сигнализацией.

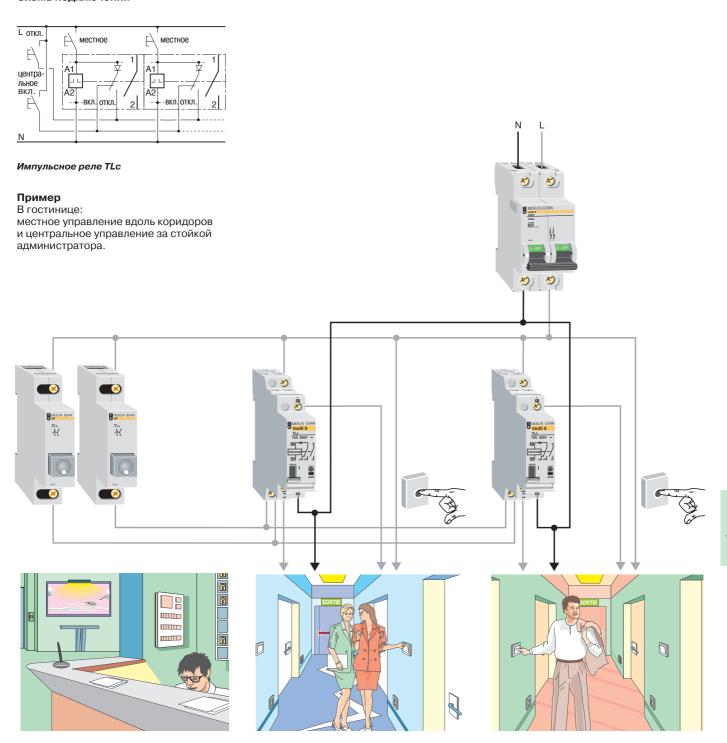

Схема соединения


Импульсное реле TL 16 A с ETL, 3 полюса + нейтраль


Импульсное реле TL 16 A c ETL

Импульсное реле TL 32 A, 3 полюса

Импульсное реле TLs

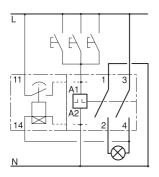


Импульсные реле для центрального управления

Принцип действия

Центральное управление цепями посредством импульсного сигнала по принципу "замыкание" или "размыкание", передаваемого по контрольному проводу для замыкания или размыкания нескольких цепей одновременно. Срабатывание при местных импульсных сигналах.

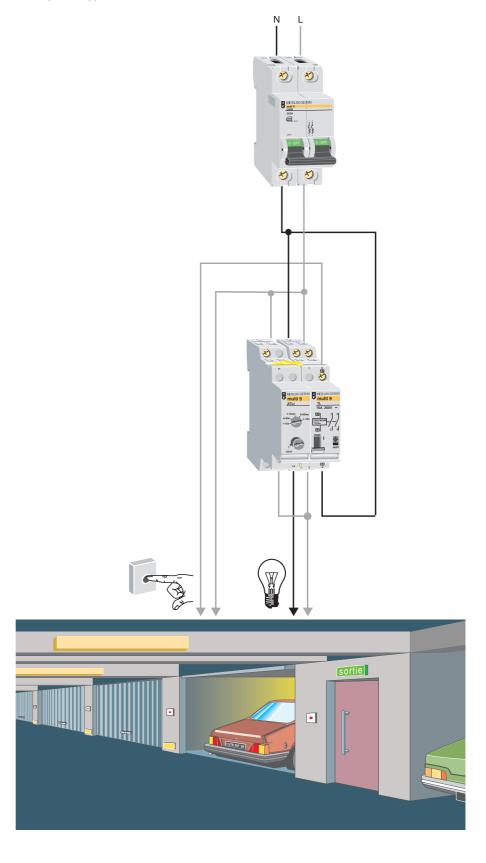
Схема подключения


TL, TLs Импульсные реле с таймером

Принцип действия

Импульсный сигнал, посылаемый нажатием кнопки замыкает реле. Таймер ATEt размыкает реле по прошествии установленного периода времени, регулируемого в пределах от 1 секунды до 10 часов. Новый импульсный сигнал, поступивший в течение времени ожидания, размыкает реле и останавливает таймер.

Применение импульсного реле TLs с вспомогательным контактом позволяет получить дистанционную сигнализацию.


Схема подключения

Таймер ATEt + импульсное реле TL

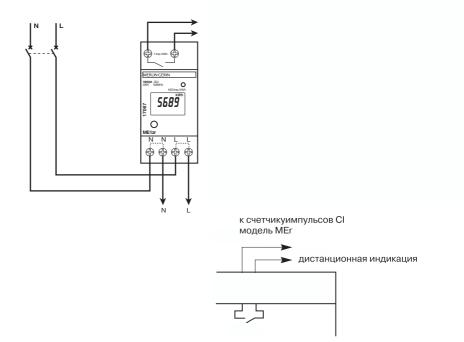
Пример

Освещение подземной стоянки.

ME/ME4zrt Счетчики электроэнергии

Однофазные счетчики электроэнергии ME/MEr

Применение


Предназначены для измерения (по обычному тарифу) активной электроэнергии, потребляемой однофазной цепью до 63 А.

Примечание

■ счетчик МЕг имеет импульсный выход (сухой контакт, без потенциала) для передачи счетной информации на расстоянии, благодаря чему учет осуществляется в реальном времени: 1 импульс 200 мс = 1 кВт/ч.

Примечание

■ MEr – для дистанционной передачи данных учета подсоединить соответствующие зажимы.

Трехфазные счетчики электроэнергии ME4zrt

Применение

Предназначены для измерения (по обычному тарифу) активной электроэнергии, потребляемой трехфазной цепью до 400 А. Измерение производится через трансформаторы тока (один ТI на каждую фазу) в соотношении In/5 А.

Сферы применения

- контроль потребления;
- оценка энергетических постов (аналитическая бухгалтерия);
- перераспределение нагрузок;
- профилактическое обслуживание.

Примечание

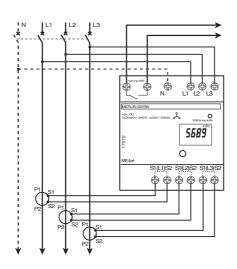
- счетчики ME4zrt имеют импульсный выход (сухой контакт) для передачи счетной информации на расстоянии, благодаря чему учет осуществляется в реальном времени:
- 1 импульс 200 мс = 1 кВт/ч (или по другим характеристикам в зависимости от TI).

Установка

Счетчики ME4zrt могут устанавливаться на следующих объектах:

- в промышленном секторе (цеха, станки, стройплощадки);
- в общественном секторе

(магазины, учреждения, офисы);


 \blacksquare в жилищном секторе (коттеджи, кэмпинги, отели).

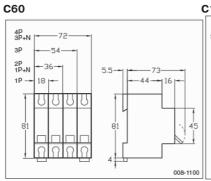
Тип устанавливаемого трансформатора зависит от расчетной номинальной нагрузки:

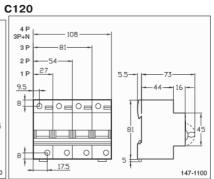
- P = 33 кВт (In = 50 A): ТI на 50/5 A;
- P = 66 кВт (In = 100 A): TI на 100/5 A;
- P = 132 κBτ (In = 200 A): TI на 200/5 A;
- P = 264 кВт (In = 400 A): ТІ на 400/5 A;

Примечание

■ ME4zrt - для дистанционной передачи данных учета подсоединить соответствующие зажимы.

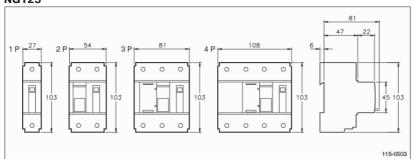
Реле времени

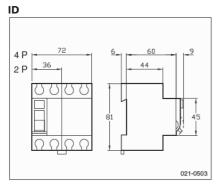

Выбор реле времени ІНР или ІН производится в соответствии с критериями, представленными в таблице:

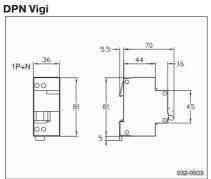

Реле времени	Тип	Кол-во каналов	Диапазон програм- мирования	Мин. время между 2-мя коммутациями	Кол-во коммутаций	Защита от отключения цепи	Кол-во модулей Ш=9 мм	Принуди- тельные команды Вкл./Откл.
Интуитивные	IHP 1c	1	24ч и/или 7 дней	1 мин	56	6 лет	5	Вкл./Откл.
	IHP+ 1c	1	24ч и/или 7 дней	1 c	84	6 лет	5	Вкл./Откл.
	IHP 2c	2	24ч и/или 7 дней	1 мин	56	6 лет	5	Вкл./Откл.
	IHP+ 2c	2	24ч и/или 7 дней	1 c	84	6 лет	5	Вкл./Откл.
Интуитивные								
компактные	ІНР 1с 18 мм	1	24ч и/или 7 дней	1 мин	28	3 года	2	Вкл./Откл.
Ш=18 мм	ІНР+ 1с 18 мм	1	24ч и/или 7 дней	1 мин	42	3 года	2	Вкл./Откл.
Механические								
	IH 60mn 1c SRM	1	60 мин	1 мин 15 с	24 вкл./выкл.	отсутствует	6	Вкл.
	IH 24h 1c SRM	1	24 ч	30 мин	24 вкл./выкл.	отсутствует	6	Вкл.
	IH 24h 1c ARM	1	24 ч	30 мин	24 вкл./выкл.	150 ч	6	Вкл.
	IH 24h 2c ARM	2	24 ч	30 мин	24 вкл./выкл.	150 ч	6	Вкл.
	IH 7d 1c ARM	1	7 дней	4 4	21 вкл./выкл.	150 ч	6	Вкл.
	IH 24h+7d 1+1c ARM	1+1	24ч и/или 7 дней	45 мин + 12 ч	16 вкл./выкл. + 7 вкл./выкл.	150 ч	6	Вкл.
Механические								
компактные	IHH 7d 1c ARM	1	7 дней	24	42 вкл./выкл.	100 ч	2	Вкл./Откл.
Ш=18 мм	IH 24h 1c ARM	1	24 4	15 мин	48 вкл./выкл.	100 ч	2	Вкл./Откл.
	IH 24h 1c SRM	1	24 ч	15 мин	48 вкл./выкл.	отсутствует	2	Вкл./Откл.
Много-								
функциональ- ное годовое	ITM Ikeos	4	60 мин, 24 ч, 7 дней, 7 дней + фиксированные дни (1)	1 c	(3)	5 лет	10	

⁽¹⁾ программирование фиксированных дней позволяет организовать специальное управление в эти дни.
(2) программирование импульсных сигналов позволяет коммутировать цепь на время не более 1 минуты (устанавливается в пределах от 1 до 59 с); команда импульсного сигнала всегда выполняется в первую очередь.
(3) 45 временных диапазонов при еженедельном программировании, 5 временных диапазонов при ежегодном программировании, 20 различных импульсов при программировании импульсов.

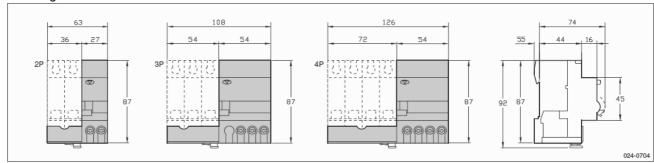
Выходной контакт	Переход на	Подсветка/	Функция	Программирование	Безвинтовое	№ по каталогу
(cos ц= 1)	летнее/зимнее	Случайная	«выходного дня»	импульсных	соединение	
	время	функция		сигналов (2)		
16 A	Автоматический		-		-	CCT15400
16 A	Автоматический	•	•	•	•	CCT15401
16 A	Автоматический		•		•	CCT15402
16 A	Автоматический			•		CCT15403
16 A	Автоматический					15854
16 A	Автоматический	•	•	•		15837
16 A	Ручной					15338
16 A	Ручной					16364
16 A	Ручной					15365
16 A	Ручной					15337
16 A	Ручной					15367
16 A	Ручной					15366
10.4						45004
16 A	Ручной					15331
16 A	Ручной					15336
16 A	Ручной					15335
10 A	Автоматический			•		15270
IUA	АВТОМАТИЧЕСКИИ			•	•	15270

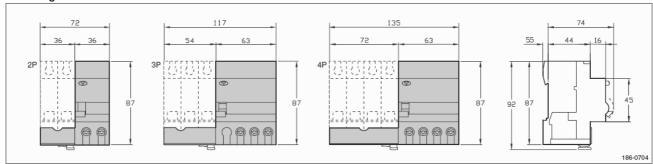


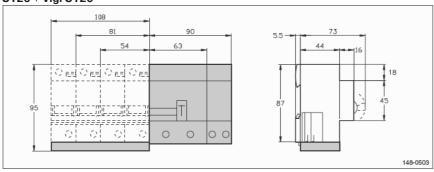


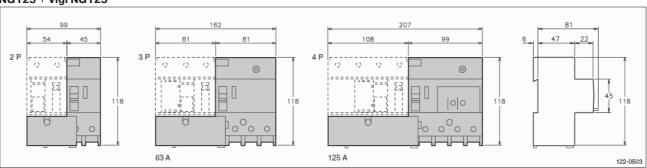


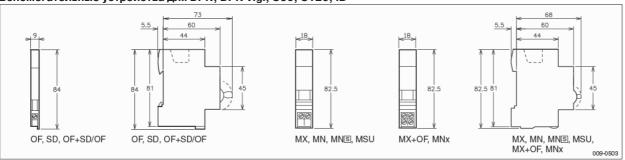
Размеры

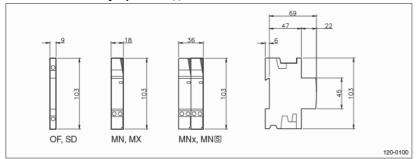

NG125

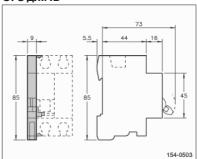


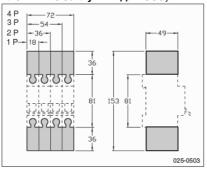

C60 + Vigi C60 < 25A

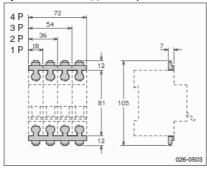

C60 + Vigi C60 > 25A и < 63A

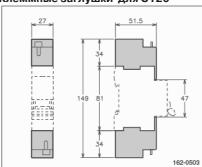

C120 + Vigi C120

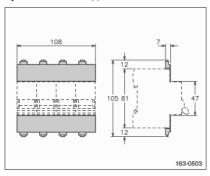

NG125 + Vigi NG125

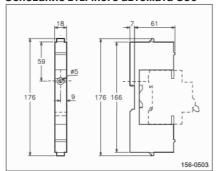

Вспомогательные устройства для DPN, DPN Vigi, C60, C120, ID

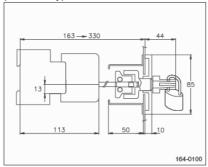

Вспомогательные устройства для NG125

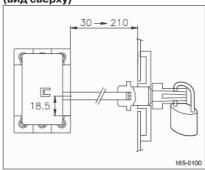

OFS для ID

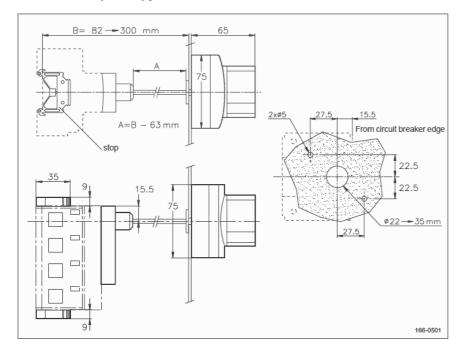

Клеммные заглушки для С60, ID

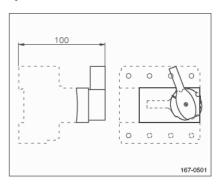

Крышки винтов для C60, ID


Клеммные заглушки для С120

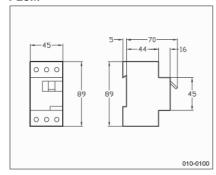

Крышки винтов для С120

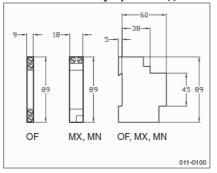

Основание втычного автомата С60

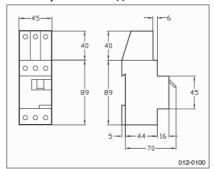

Поворотная рукоятка для C60, C120 (вид сбоку)


Поворотная рукоятка для C60, C120 (вид сверху)

Выносная поворотная рукоятка для NG125

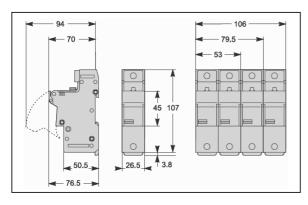


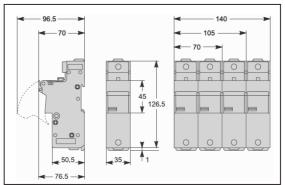

Рукоятка для NG125



P25M

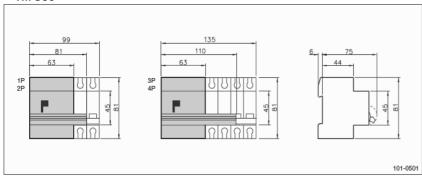
Вспомогательные устройства для Р25М Токоограничитель для Р25М

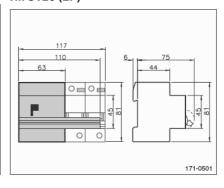




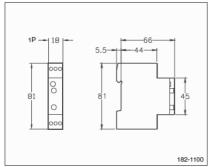
Размеры

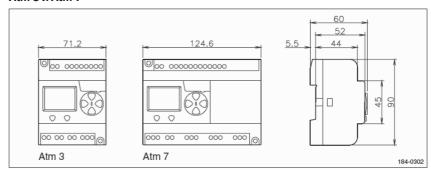
SBI (14 x 51)

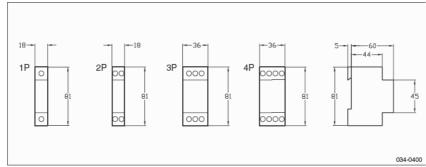

SBI (22 x 58)



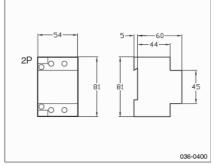
Tm C60

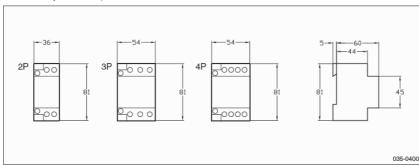

Tm C120 (2P)

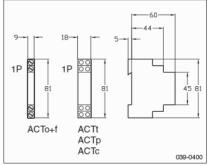



Atm

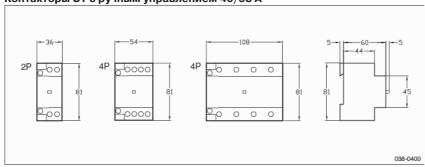
Atm 3 и Atm 7

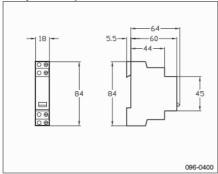


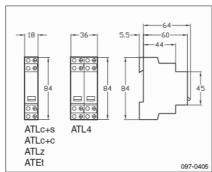

Контакторы СТ 16/25 А

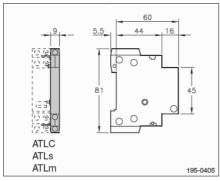

Контакторы СТ 100 А

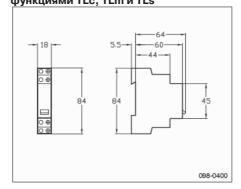
Контакторы СТ 40/63 А

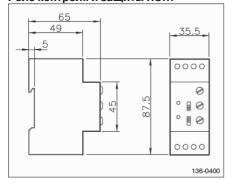

Вспомогательные устройства для СТ

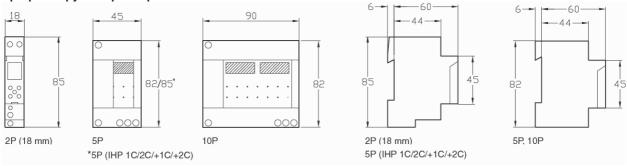

Контакторы СТ с ручным управлением 25 А

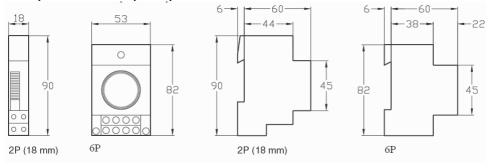

Контакторы СТ с ручным управлением 40/63 А

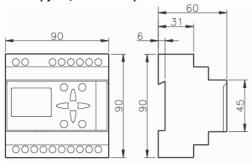

Импульсные реле TL и ETL


Вспомогательные устройства


Вспомогательные устройства 9 мм

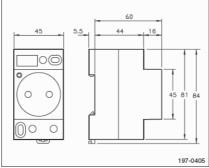

Импульсные реле со встроенными функциями TLc, TLm и TLs


Реле контроля и защиты RC...

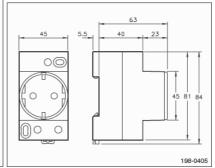

Программируемые реле времени ІНР

Электромеханические реле времени ІН

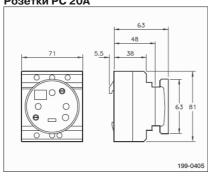
Многофункциональное реле ITM Ikeos

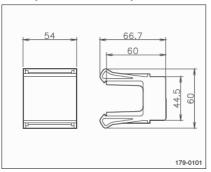

Трансформаторы безопасности и звонковые трансформаторы ТR

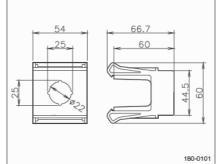
067-0400


Розетка РС 16A итальянский стандарт

60 44 45 85 87

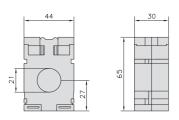

Розетка РС 16A NF


Розетка РС 16A немецкий стандарт

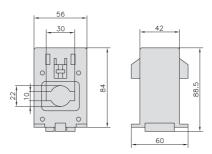

Розетки РС 20А

Универсальные адаптеры

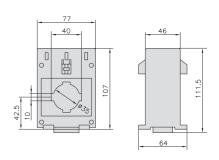
Адаптеры для кнопок ХВ4-ХВ5

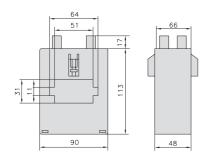


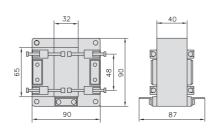
5

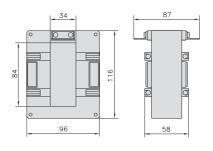

TI Трансформаторы тока

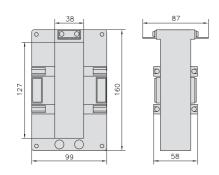
Каталожные номера

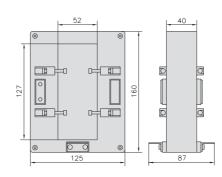

16501 - 16506, 16451 - 16456

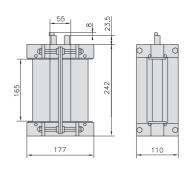

16509 - 16512, 16459 - 16462


16518 - 16521, 16468 - 16471

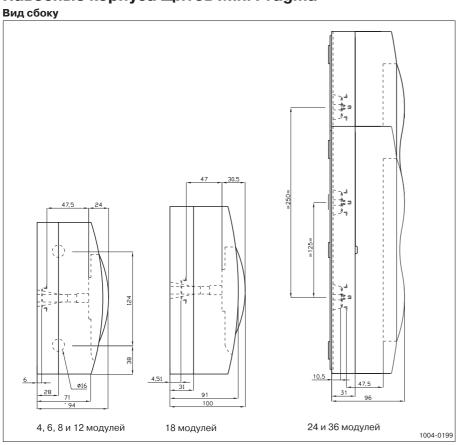

16523 и 16524, 16473 и 16474


16530 - 16535, 16480 - 16483

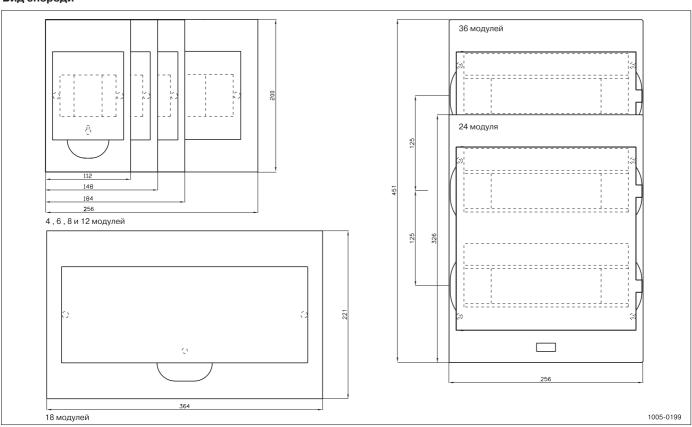

16537 и 16538


16540 - 16544

16545 и 16547



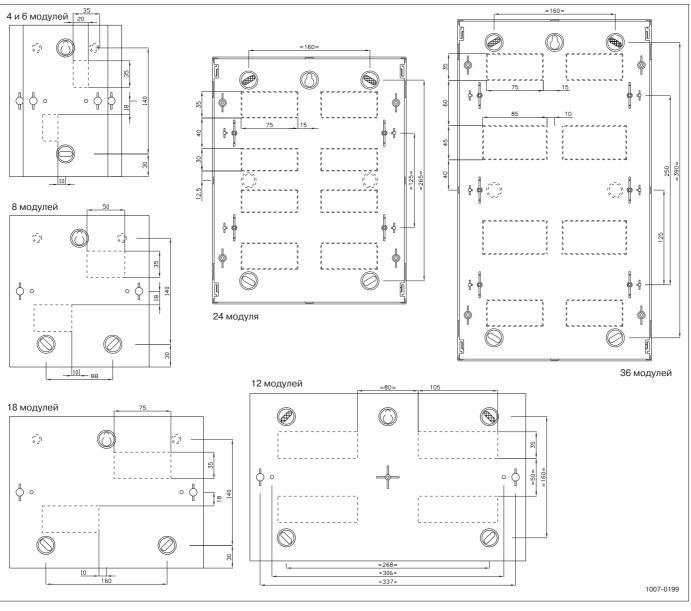
16548 и 16549



Корпуса щитов

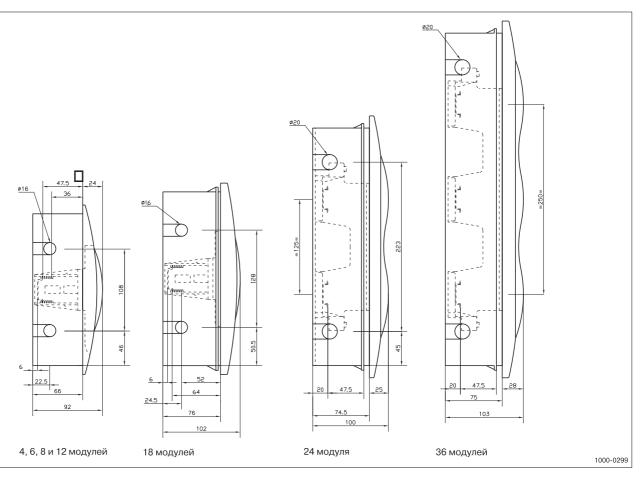
Навесные корпуса щитов Mini Pragma

Вид спереди

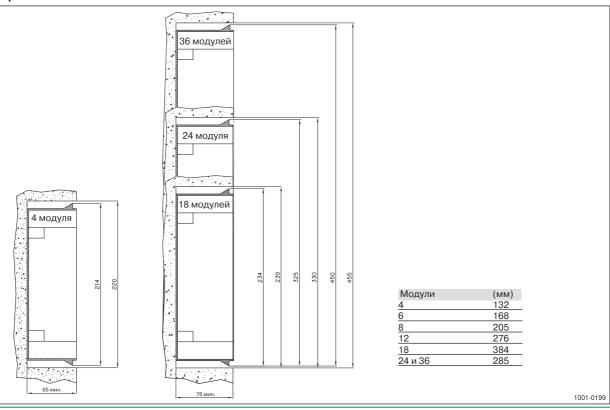


Корпуса щитов

Навесные корпуса щитов Mini Pragma (продолжение)

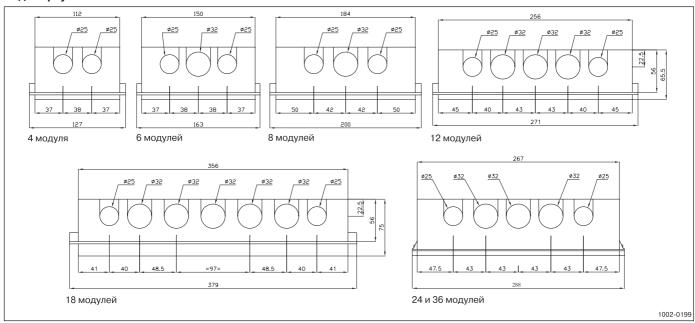


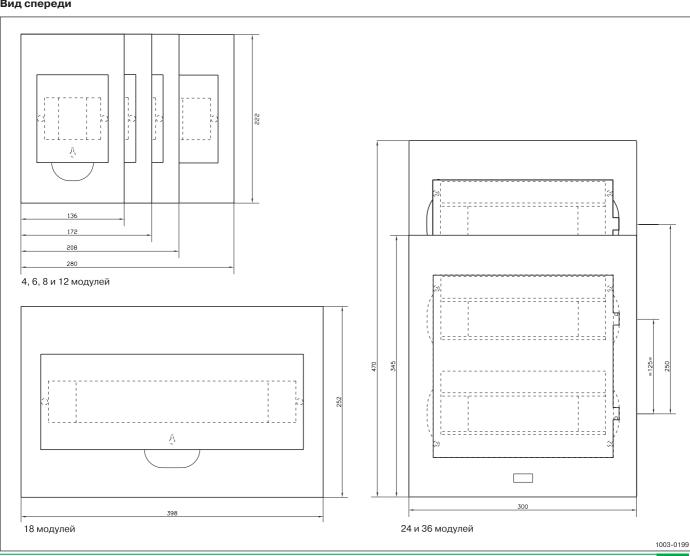
Внутренний вид



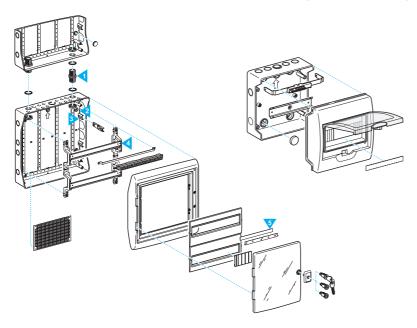
Встраиваемые корпуса щитов Mini Pragma

Вид сбоку

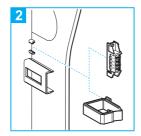

Вид сбоку в разрезе


Корпуса щитов

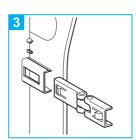
Встраиваемые корпуса щитов Mini Pragma (продолжение)


Вид сверху

Вид спереди


Kaedra Герметичные коробки и мини-корпуса для модульного оборудования

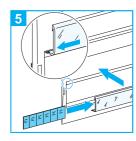
Присоединение


Корпуса могут крепиться горизонтально или вертикально, сохраняя степень защиты IP65 и не мешая прокладке кабеля.

Выступы

Расположены внутри корпуса и на шасси, служат для:

- клеммников с 4 отверстиями;
- креплениий для проводов.


Передние и задние защелки

Крепятся справа и слева, облегчают прокладку проводов и доступ к интерфейсу.

Шасси

- DIN рейки служат для установки с регулировкой по высоте и глубине, что облегчает прокладку кабелей;
- шасси раздвигаются для облегчения установки пластины сзади.

Нанесение маркировки

Простое и быстрое нанесение маркировки при помощи этикеток.

Механические характеристики

- откидная передняя панель позволяет открывать дверцу вправо или влево;
- глубина внутреннего пространства: 100 мм;
- размер откидной крышки зависит от расстояния между рейками (125, 150, 175 мм).

Мини-корпус

- съемная опора для клеммника;
- внутренняя часть с выступом для клеммника с 4 отверстиями и крепления для проводов.

Технические характеристики

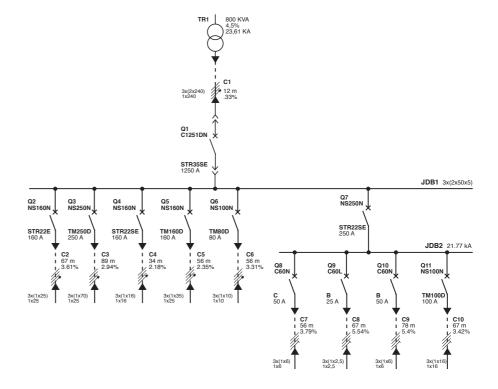
- самоутилизирующийся изолирующий материал;
- рабочая температура: от -25 °C до +60 °C;
- цвет: светло-серый RAL 7035 и зеленая прозрачная дверца;
- IP65 в соответствии с МЭК 60529;
- IK09 в соответствии с MЭК 60529■ IK09 в соответствии с EN 50102;
- класс 2: полная изоляция;
- устойчивость к огню и сверхвысоким температурам: 650 °C в соответствии с МЭК 60695-2-1;
- соответствие нормам: МЭК 60439-3;
- устойчивость к агрессивным химическим и атмосферным воздействиям.

Экодиал

Программа расчета сетей низкого напряжения

Изготовителям распределительных щитов, монтажникам и проектировщикам электросетей наша компания "Шнейдер Электрик" предлагает широкий спектр компьютерных программ, которые окажут неоценимую

помощь при проектировке электросетей и составлении сметы. Данные программные продукты также позволяют вести проектную документацию, вплоть до составления спецификации на закупку необходимого оборудования.


Экодиал 3.3

Эта программа необходима при проек-тировке низковольтных распределительных сетей. Она предназначена как для гражданского, так и для промышленного сектора и позволяет успешно решать любые задачи по расширению, модернизации и унификации сетей. Построенная по принципу разветвленного меню, она отличается простотой использования и позволяет:

- проектировать схемы подключения электрооборудования;
- перенос схем в AutoCAD;
- вести расчеты:
- □ токов короткого замыкания;
- □ сечений проводников;
- □ падений напряжения;
- □токов утечки;
- осуществлять выбор автоматических выключателей с учетом селективности и каскадирования;
- обеспечивать безопасность персонала;
- вести автоматический расчет изменений при модификации отдельного элемента сети;
- проектировать и рассчитывать схемы;
- распечатывать проектную документацию.
- производить проверку селективности.
- строить кривые отключения аппаратов по отдельности или совместно.

Соответствие нормам

■ английская версия соответствует норме МЭК 909 и МЭК 374.

Для заметок